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1« INTRCDUCTION

The study of kinetic theory has its roots in the
classical physics of the last century. The most significant
early pioneers in the field were Maxw=211l(1) and Boltzmann (2).
Their work led to a statistical interpretation of
thermodynamics and transport phenomena which ultimately re-
sulted in the asceadency of the kinetic-molecular theory of
matter,

The first completely satisfactory attempt at describing
transport processes from a kinetic molecular point of view is
due to Boltzmann. He proposed an integro-differential equa-
tion appropriate to such a description in a paper of 1872(2).
This has come to be known as the Ecltzmann equation.

However, it was not until the powerful mathematical
techniques of functional analysis were developed early inmn the
20th century that a general method for the solution of
Boltzmann's equation became possible. The first attempt at
finding such a general solution was made by the mathematician
David Hilbert (3). Though his solution failed to produce a
satisfactory procedure for the evaluation ¢f traasgort coef-
ficients, his techniques provided a firm mathematical founda-
tion which paved the way for the simultaneous successes of
Chapman(4,5) and Enskog(6). Their contribution was to pro-

pose that the time dependence of the singlet distribution



function in a hydrodynamic regime should be a parametric
function of the macroscopic thermodynamic state variables and
their spatial gradients. The Chapman-Enskog method will be
discussed in detail in Chapter 3.

Within the context of this dissertation, it is intérest-
ing to note that the Chapman-Enskog approach to the theory of
gases in nonequilibrium states predicted the existence of
thermal diffusion in dilute gas mixtures before it was ob-
served experimentally(7). Long known for ligquids as the
Soret effect, it was first observed in the gas phase by
Chapman and Dootson (8).

An interesting development in the kinetic theory as ap-
plied to gases with rotational structure came with
senftleben's observation in 1930 of the effect of an applied
magnetic field on measurements of the thermal conductivity of
oxygen(9). This effect was also observed for the shear
viscosity of oxygen by Engelhardt and Sack(10). Subsequent
experimental work in the 1930s established the "Senftleben
effect" as a property characteristic of paramagnétic gases.

An early explanation of the Senftleben effect in terams
of a change in the molecular mean free path due to the
- presence of an applied magnetic field was given by Gorter(11)
and later more quantitatively by Zernike and Vam Lier (12).

Briefly, the idea is as follows,



The presence of a thermodynamic stress in a dilute mo-
lecular fluid results in a preferential alignment of molecu-
lar angular momenta. The presence of this polarizatiom ia
the angular momentum tends to decrease the size of molecular
cross sections appropriate to the description of transport
processes., The behavior of a rotating molecule in a gas can
be illustrated if one imagines the molecule as a spinning
disk with axis of rotation parallel to an average magnetic
dipole moment and perpemdicular to the disk. The application
of a field causes the axis to precess about the direction of
the field. This precession increases the average molecular
cross section by destroying the polarization, hence decreas-
ing the transport coefficient correspondent to the
thermodynamic stress. The effect becomes saturated if the
applied field is sufficiently strong so that the collisional
frequency is much smaller than the precessional frequency.

dpparently, it never occurred to early workers that the
Senftleben effect could be generalized to diamagnetic gases.
Since there are relatively few examples of paramagnetic gases

(NO and 0, being the most notable examgles), interest in the

2
study of such a seemingly specialized effect remained limited
for many years. |

The situation changed drastically in the early 1960s
when it was realized that field effects should exist for

diamagnetic gases also. Beenakker et al.(13) first observed



a magnetic field effect im the shear viscosity of the

diamagnetic gases CO and N The corresponding experimental

¢
result for the thermal conductivity was subseguently obtained
by Gorelik and Sinitsyn(14). This effect in both cases was
shown to be similar to the Senftleben effect though it oc-
curred at much higher field strengths because the magnetic
moment of a diamagnetic molecule (of the order of a nuclear
magneton) is much smaller than that of a paramagnetic mole-
cule (of the order of a Bohr magneton). Im addition, it was
soon generally realized that the presence of an applied mag-
netic field acting on a fluid could give rise to transverse
components in the transport coefficients due to a lowering of
the spatial symmetry of the system. The existence of these
components was verified experimentally in 1966 for the shear
viscosity by Korving et al, (15) and for the thermal
conductivity by Gorelik, Nikolaevskii, and Sinitsymn(16). Fi-
nally, it should be mentioned that after some unsuccessful
attempts dating back to the 1930s, Senftleben(17) was able to
obtain the first successful measurement of the effect c¢f a
static electric field on the thermal conductivity of a polar
gas., A corresponding measurement of the effect of an
electric field on the shear viscosity was obtained by
Gallinaro, Meneghetti, and 8coles(18);

The offects of static applied fields (electric or mag-

netic) on the tramsport properties of gaseous systems have



come to be known collectively as “Senftleben-Beenakker
effects." They are of inﬁerest because they provide rather
direct information concerning the arisotropy of
intermclecular potentials.

The general structure of nonequilibrium thermodynamics
as first proposed Ly Onsager(19,20) and later generalized by
Casimir(21) to imnclude the explicit effects of applied
fields, provides an interpretive framework appropriate to the
understanding of transport in a linear fhencmemological
regine. Here follows a rudimentary survey of some of the
" basic ideas.,

It is assumed as a postulate of nonequilibriuﬁ
thermodynamics that fluid systems not toc far removed from
equilbrium can be represented by a linear phenomenology.

This is to say that a flux, Ji, of scme fphysical parameter
appropriate to a thermodynamic description of the state of
the fluid (e.g. thermal energy, mass or fluid velocity) can
be linearly related to thermodynamic forces (e.g. temperature
gradient, diffusion force, or rate of shear tensor), xj,

by the following exgression,

-SL. . (1-1
J; = gx.ijxj
where Li' is termed a phenoaenological coefficient. The
thermodynamic forces are the result of some stress placed on

the fluid system such as a temperature, coacentration or



velocity gradient.

From the form of Eq. (1-1) it follows that the
phenomenological coefficients can be regarded as elements of
a matrix. The diagonal coefficients represent direct effects
and correspond to the usual transport coefficienfs such as
the thermal conductivity which appears in Fourier's Law of
Heat Tramnsport, or the diffusion coefficients which arise in
Fick's Laws of Diffusion, etc. These relate the flow of sone
physical property of the fluid to a stress in that sanme
physical property. For example, the thermal conductivity is
the phenomenological coefficient relating a heat flux to a
corresponding thermal stress (i.e,, a temperature gradient).
The off-diagonal elements are phenomenological coefficients
vhich couple the flow of some physicai property to a stress
in some different physical property. The thermal diffusion
coefficient is an example of a phenomenological ccefficieat
for such a coupled effect., It relates a diffusive flux of a
molecular species to a thermal stress. A

Onsager was able to show that the forces and fluxes
could be chosen so that the matrix of phencmenological coef-
ficients would be symmetric, This choice is embodied in the

expression,
£ -7 §Jixi (1-2)

Here, the derivative on the left is the rate of entropy pro-



duction (entropy is maximized at equilibrium) and T is tem-
perature, If Eg. (1-2) is valid for a sgecific choice of
forces and fluxes, then the corresponding phenomenological

coefficieats obey the following symmetry relationm,

yo

L. {1-3)
i3 % Fs

Equation (1-3) is a formal expression of the Onsager
reciprocity relations.

The consideration of an applied field modifies Egq. (1-3)

as follows,

- . 1-4
Liy(B) = le(Tg) (1-4)
where F denotes the field and TF denotes its time reversed

image. A static electric field, E, is invariant with respect

to time imnversion, thus Eq. (1-4) beconmes,

Liy(B) = Ly, (E) (1-5)

In contrast, since a comnstant magnetic field, H, ultimately
arises from the motion of electrical charges, the time
reversed image of H is -H. Im light of this fact, Egq. (1-4)

becounes,

= - 1-6
Ljy(H) = L, (-H) | (1-6)

Equation (1-4) embodies the fundamental relations of



nonequilibrium thermodynamics which have come to be kncwn as
the Onsager-Casimir reciprocity relationms.

The first synthesis of quantum mechanics with the
kinetic molecular theory of transport processes is due to
Uehling and Uhlenbeck (22,23)., In their approach, Boltzmann's
equation is modified by replacing the classical expression
for the differential scattering cross section appearing
within the collision term, with its quantum mechanical
analog. This method evades interpretational difficulties en-
countered when one attempts to define a molecular phase space
distribution function in a manner consistent with the
Heisenberg uncertainty principle. Green(24) has givem a more
rigorous statistical mechanical justificatiom of this pproce-
dure,

Wang Chang and Uhlenbeck have extended the preceding
treatment to the description of dilute polyatomic fluids
possessing active internal degrees of freedcm(25). The re-
sulting analog of Boltzmanm's equation (i.e., the Wang Chang-
Uhlenbeck equation) has as its solution a velocity distribu-
tion function indexed Lty am appropriate internal state label.
However, the Wang Chang-Uhlenbeck equation is an ad hoc ex-
pression which employs, without justification, a quantum
mechanical differential cross section in an essentially

classical equation.



It is well-known that the expectation value of a
mechanical property in quantum mechanics is given as the
trace of the matrix product of the density matrix of the
system and the appropriate self-adjoint operator. For a
dilute gas, bulk mechanical properties can be expressed in
terms of operators which consist of a sum of single molecule
operators. Thus, the trace formula can be written exclusive-
ly in terms of a singlet deasity matrix. (For mixtures, sin-
glet density matrices appropriate to each species are
needed.) In additiomn, if the bulk state of a dilute gas is
sufficiently homogeneous (i,e, its bulk fproperties vary oa a
spatial and temporal scale which is much larger than a mean
free path or a mean collision time), then it is characterized
by a singlet density matrix (or matrices) which can to a good
approximation be considered diagonal in total molecular ener-
. gy. For molecules which have no internal state degeneracy,
this amounts to approximate momentum diagonality as well, 1In
the nondegenerate case, one can ignore the coantribution of
all off-diagonal density matrix elements to the evaluation of
expectation values which then can be expressed as averages
with the diagonal density matrix elements playing the role of
a M"quasi-classical" singlet distritution function. It is
this "distribution function" which is the sclution of the
Wang Chang-Uhlenbeck equation. However, the existence of

degeneracy im the internal states (e.g, rotational states) of
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the gas molecules, inplies that some of the off-diagonal den-
sity matrix elements cannot be ighored in the evaluation of
averages. Thus, description of the relaxation of the gas to
equilibrium requires a more fundamental approach. This is
discussed in detail in Chapter 2. It suffices here to note
that the correct quantum mechanical analcg of Boltzmann's
equation was obtained first by Waldmann(26) im 1957 and inde-
pendently later by Snider(27) in 1960. The #aldmann-Snider
equation incorporates formal quantum mechanical scattering
theory as proposed by Lippman and Schwinger (28) and Gell-Mann
and Goldberger (29) into the kinetic molecular theory of
traasport processes.,

The primary objective of this dissertation is to examine
various cross sectioas which arise from the solution of the
classical Boltzmann equation and its quantum mechanical
analog (;ﬁldmann-Snider equation) for a binary mixture of
atoms and diatomic (more generally, linear) molecules close
to equilibrium (ise, within a linear phenomenological
regime). This will be done for realistic nonspherical inter-
actions and in the presence of an applied fieid. (Ar=-COj
He-coz, and Ar-N, systems are considered.) A perturbatioa
expansion of the linearized collision operator in the density
of the diatomic species will be constructed which will allow
an explicit separation of contributions from atom-atom, atom-

diatom and diatom-diatom collisions. The discussion will



1

center on the evaluation of the thermal diffusion coefficient
since this quantity is extremely sensitive to the
nonspherical nature of an interaction. Both classical and
quantal results will be given and compared. Of special
interest in this connection is the application of the
recently developed gquantum mechanical sudden approxima-
ticns(30,31,32) to the evaluation of transport cross sec-
tions. Also, an amalysis of the dynamical approximations in-
herent in the model calculations of the type pexformed by
Cooper, Dahler, Verlin, Matzen, and Hoffman(33) will be given
in light of results cbtaimed in this work. Finally, wherever
possible, comparison will be made with experimental results
obtained by various workers., In summary, it is the intention
of this investigator to provide results which will afford
valuable insight into the applicability of classical and
quantal approaches to the evaluation of tramsport coeffi-
cients and also add to the interpretational framework for

assessing the value of model calculaticas,
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2. A PARALLEL FORMALISM FOBR THE CLASSICAL

AND QUANTAL KINETIC EQUATIONS FOR DILUTE GASES
2.1. A Derivation of the Classical Boltzmann Equation

The original development of Boltzmann's equation was
heuristically derived by considering the randomizing effect
of intermolecular collisions on the temporal evolutionm of the
velocity distribution in a dilute gas., In order to place the
equation on a firmer theoretical basis, later attempts were
made tc derive it directly from Liouville's theorem (i.e. the
conservation of extension in phase space). The first suc-
cessful completion of this task was due to Bogoliubov(34) in
1946 and was followed shortly thereafter by the work of
Kirkwood (35). The’method used in the present vwork is similar
to the approach used ky Hoffman and Dahler(36).

The Boltzmana equation is a closed equation for a sin-
glet phase space distribution function. Physically, it pro-
vides a description of relaxation processes occurring in
dilute gas systems. The relaxation of such a system to an
equilibrium state can be understood in terms of processes
cccurting on three vastly, different tinme scales. The decay of
nonequilibrium distributions of wmolecular parameters
vhich are not coaserved in free flight (e.,g, rotational phase)
occurs on a short or ccllisional time scale which is

2

characterized by the mean duration of a collision (0(<10-l )
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sec.). In contrast, nonequilibrium distributions of free
flight invariant parameter (e,g. momentum, kinetic energy)
relax on a much longer kinetic time scale characterized by
the mean interval between successive collisians (0(10'10-10'9
sec, at STP). 1In a dilute gas, many orders of magnitude sep-
arate the collisional and kinetic time scales. A third very
long hydrodynamic time scale describes the relaxation of
nonequilibrium distributions of summational invariants (€sg.
mass, total energy) via macroscopic flows (0(>10~2) sec.).

In the collisional regime, the time evolutionm of the systen
must be described by Liouville's equation incorporating a
full set of boundary conditions. In comntrast, the Kinetic
regime can be adequately characterized by a locally uniform
singlet distribution function which is a function of free-
flight invariant parameters and time ("lccally uniform™ im-
flies that the function is effectively constant over a
distance of the order of a molecular mean free path). The
hydrodynamic regime is completely characterized by the macro-
scopic fluid fields. Boltzmann's equation is appropriate to
the description of processes occurring on the kinetic and
hydfodynamic time scales but not on the collisional time
scale. Unlike Liouville's equation, Boltzmann's equation ex-
hibits temporal irreversibility. This is true because the

singlet distribution function which satisfies Boltzmann's

equation can be viewed in a crude sernse, as a temporal aver-
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age over the rigorous distribution function (which satisfies
Liocuville's equation) on the collisional time scale. Thus,
the irreversibility of Boltzmann's equation stems directly
from the’loss of "fine-grained" dynamical information due to
the averaging process (i,e, collisional randomization of
nonconserved molecular parameters)., Here follows a develop-
ment of Boltzmann's equation im classical mechanics beginning
with the full microscopic description implicit in Liouville's
theorem., For simplicity, a single component system is coa-
sidered. Generalization of the results obtained to
nulticomponent systems provides no difficulty and will be
discussed later.

Fundamental to the statistical mechanical development of
gas kinetics is the concept of an N-molecule probability dis-
tribution funétion, f(N). It is parameterized on time and on
the coordinates and conjugate momenta of each of the N mole-
cules. The coordinates and momenta can be thought of as
comprising the components of a vector ig a multidimensional
Euclidean space (i,e. N-molecule phase space or I'=-space,)
Thus, f<N)(5(N),t) denotes the protability density of a
mechanical state, g(N), at time, t, where g(N) is a I'-space

vector and has the forn,

(N) Ny 2,941y

N
(N) p

X = (9_1:9_2:_194\,:21:2_2,,.:31\1), = (_fL

Here, g; and p, denote generalized coordinates and conjugate
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momenta of the ith

molecule. For future reference, it should
also be noted that I'-space can be thought cf as the direct

sum of N single molecule phase spaces. A point in the single
molecule phase space for molecule i (ui space) can be written

as,

§j_ = (Qi1rqi2r..:qiv 'pil'piZ"‘"pi\J ) = (gl,gl) (2.1-2)

is the positional coordinate for the Bth degree of
th

where liB
freedom of the i molecule amd Pig is its conjugate momen-
tum. Here, each mulecule has v "thermally active" degrees of
freedom. Within the context of gas kinetics, tkese always
include translational degrees of freedém. In addition, for
diatomic (or linear polyatomic) molecules, two rotational
degrees of freedom are active and for a nomlinear polyatonm
all three rotational degrees of freedom are active. Other
molecular deygrees of freedom (vibrational, electronic, nucle-
ar) are usually inactive and can be ignored.

The Liouville theorem, which embodies the dynamical in-
formation of the classical equations of motion (Hamiltom's
equations), takes a differential form as a continuity equa-

tion for f(N),

(N) -
_g% + {f(N) ,H(N)} = 0 (2.1-3)

Here, H(N) is the N-molecule Hamiltonian function and the

braces are the Poisson bracket., For geaneral functions of the
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phase variables, ¢ and ¥, the Poisson bracket has the explic-

it form,

Y 20 oV
{¢,v} I 55. " 3p..50 ] (2.1-4)
1§1821 aqlB Pig apiB Uip

The motion of a classical N-body system is characterized by
nonintersecting trajectories im I'-space.

It is possible to describe the probability distrikution
for a set of s molecules, which is a subset cf thé.N mole-
cules comprising the system, by the definition of a reduced
distribution function, f(s). The reduced distributiom func-
tion is obtained by integrating over the phase variables of

the molecules not included in the s-fold cluster. It has the

fornm,
Here, f(N) is taken to be normalized to N!. This

normalization is assumed because for an N-fcld set of ideanti-
cal molecules there exist N! indistinguishable permutations
of molecular labels. JIntegration of Eq. (2.1-3) cver the
phase points of the N-s molecules not included in the cluster
yields the classical BBGKY hierarchy of cougled equations for
which a general member can be written,

}f(s+1)

T, a(8)ye(e) Z fd—s+l 'V (2.1-6)

i,s+1
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Here, { , Y}, is a linear partial differential operator which
when acting on a function, ¢, yields the Pcisson bracket,
{®,¥}. The derivation of Eq. (2.1-6) depends on the assump-
tion that the potential energy, V(S), of an isolated s-fold
molecular cluster can be expressed as a sum cf pairwise in-
teractions plus contritutions from external fields. Thus,

)

is assumed to have the form,

s
2-2 ZV + J vi"t (2.1=7)
=1j=1i i=1

where vij is the interaction potential between the ith ana

xt is the potential energy of the jth

jth molecules and V?
molecule due to external fields., Finally, one notes that the

s-molecule Hamiltoniaa, H(S), is defined by the exfpression,

E t 5) 2.1-8

1=1(ﬁ +xm)+v (2.1-8)

where, Kint is the contribution to the kinetic energy from

internal degrees of freedom of the ith polecule and p?/ZM is
i

the ith

molecule transliational kinetic energy. For future

reference, the symbol, Ki1) will be defined here as the total

kinetic energy due to molecule i (i.€. K£1) = pi/zu + Kint).
The first member of the BBGKY hierarchy gives the total

time rate of change of the singlet distribution function, f(l)
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as a functional of i(z). It has the fornm,

(1) ‘ :
g—f_ + { .Hl(”}f“) = —Id_:gz{ ,Vu}f(z) (2.1-9)
In a similar way, thke time rate of change of f(z) is a

functional of f(3) and so on up the hierarchy., It is clear
that in order to find a closed expressiom for f(l), the hier-
archy must be truncated at the lowest level. This may be ac-
complished by assuming that any intermolecular poterntial
which is realistically applicable to dilute gas phenomena
falls cff rapidly as the distance of separation of
interacting molecules is increased. This implies that in
order to evaluate Eg. (2.1-9) a knowledge of f(Z) is needed
only in the région where molecule 1 and molecule 2 are close
and strongly interacting. Under this condition, many body
interactions are negligible and can be ignored inm a dilute
gas, since having three or more molecules in close proximity
is_a rare event., This allows the equation of change for f(z)
obtained from the hierarchy to be replaced near the interac-
tion region by a continuity equation independent of £ 3} (i.e.
the two molecule liouville equation) which is of the form,

(2)
A A R I (2.1-10)

One notes that Eq. (2.10) has the follcwing'formal solution,
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' (2),

which immediately yields the result ({ ,H(Z)} is a first

order differential operator),

where 5(2)(té) is the phase space position of a pair of mole-
cules at a time, té, which evolves dynamically to a phase
space position, 5(2), at a later time, t. Equation (2.1-12)
is the integrated Liouville ejuation which descrites a system
consisting of only two molecules. It implies that the numer-
ical value of the pair distribution function simply trans-
lates temporally in phase space as a result of the motioun of
the system.

At this point, one may introduce the assumption of mo-
lecular chaos, which is that for a time, tg, sufficiently
remote in the past one cam factorize f(z) in the following

way,

(2) ,,(2) L w -
£ (x*77 (£2) ,t0)
' (2.1-13)
(1) " " (1) " L}
£107 (%, (£2) 82V E1 T (2, (£2) ,£1)
This is to say that prior to collision, the molecular states
are uncorrelated so that the pair distribution can be regard-

ed as a product of singlet distributions. In a dilute gas
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regime it is possible to choose a time, to' which is short

enough so that Eg. (2.1-11) is satisfied for to té and long

enough so that Eq. (2.1-13) is satisfied for to tg. Such a
to cannot be found for a dense fluid since isolated binary
encounters are rare events and Eq. (2.1-10) or equivalently,
Egq. (2.1-12) becomes inapplicable., This is nothing more than
a.reaffirmation of the proposition that many body interac-
tions are important in a dense molecular fluid, but not in a
dilute one. Returning to the case of a dilute gas, it is
clear that Eq. (2.1=11) and (2.1-13) yield the result,
£2) (x®) (6),0) =
(2. 1=-14)

| (2)
et L e () (e (1), e )£ (xy (00, 8)

Here, the pair distributiom at a time, t, has been expressed
in terms of singlet distributions at a prior tinme, tye

It is also possible to write a formal sclution for Eq.
(2.1-9). If the right hand side is abkreviated by the
symbol, J(t), where the arqgument refers to the explicit tinme
dependence of the collisional term, then f(1)(§1,t) has the
forn,

fu>(£1't0) _

. t ~
(1) (o " (1) (2. 1-15)

The first term appearing onm the right can ke interpreted as
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arising from collisionless molecular motion and the second
term as containing the effect of mclecular interactions. It
is permissible to neglect the interaction since the tinme
scale involved in this analysis is much less than a mean free
time and approaches the time scale characterized by the dura-
tion of a collision. On such a shcrt time scale, one can
regard the collisional rate of change of £(1) as negligible,
This procedure yields the result,

(2) ,.(2) _
£ (?ﬁ (t) rt) (2. 1-16)

(2) (1) (1)
u e 0,08 1y (001

Since the object is to obtain an expression for £(2) in terns

of £

which is valid in a region of phase space near the
collision region, it is appropriate to neglect the effect of
external potentials on the time evolution of f(z) and £(1)
{({L.e. on a collisional time scale external rotentials have
little effect on mclecular trajectcries). Thus, g(zht ) is
defined by the expression,

2 -(t- (2) 1
g( )(to) = e (E=t ) L H T} (-t ) { ,K,‘ )“,(?f”} (2. 1-17)

Here, Héz) is tgken to be KfI) + K(') + Vv where Kf') and

, 2 127 ,
Ké') are the kinetic energies of molecule 1 and mclecule 2,
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respectively.

It is clear that the effect of e'(t'to){ 'HéZ)} is to
transform the molecular pair backward dynamically along the
two molecule phase trajectory a time interval, t-t,, before
any significant interaction occurs. The effect of the opera-
tor, e(t*to){ ,K:I)'+K§1)}, is to transform the systen
forward dynamically to the original time, t, with the
intermolecular potential "turned cff", It can be established

that the operator, §(2), defined by

s o qim w @ e (2. 1-18)

)
~ (o]
~ Pm® ~

tO

is well-defined if it acts on nonbound regions of the two
mélecule phase space (In fact, for potentials with a finite
cutoff length, g(z)(to) is independent of to if the interval
t-to is sufficiently long so that to can be taken as
precollisional). Hence, substitution of Eqg. (2.1-16) into
-Eqe (2.1-9) assuming that to is in the precollisional past,
results in the expreséion, |

ag (1)
t

(2) (1) (1) -
i 3s Bl e el (2.1-19)

(1), (1) _
+ { ;H’ }f = "Id?_(_z{ 'VIZ_

where f(1)f§]) is aan abbreviation of f(')(gi,t)f(1)(52,t).
If one considers intermolecular potentials which rapidly
vanish asymptotically with intermolecular separation, the

integral over the spatial position, r_, of molecule 2 can be

2
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limited without imtroducing significant error, to a simply

connected region, R0 , about molecule 1 which is bounded by
1,2

a finite closed surface, ¢ « This is to say that the

1,2
5 , is defined such that it contains the spatial

volume within which molecules experience significant

region, R

deflection due to intermolecular forces (i,es, the collision

region) . Outside of Rcllz-there is Ly definition, negligikle
contribution to the integral. The actual shape of 01’2 is
immaterial so long as RO],Z contains the collision region,
Thus, a "cutoff" function, 212, defined to equal unity inside
R01’2 and zero outside, can be introduced into Eg; (2.1f1m
as fcllous,

ag (1) (1)5,(D) (2) (1) (1)
¢+ 1.8 I = -fax, 2, ,{ ,V,,}8 £ £, 7(2.1-20)

Equation (2.1-20) can be further modified as follows,

ag (1)
t

£+ 1.

(2.1-21)
Id£2212[{ ,Kgl) + Kél)} - ,Héz)}]§(2)f(l)f§1)

Here, use has Lbeen made of the definition of Héz).

In a dilute gas, the distribution function can be taken
to be effectively constant on a spatial scale commensurate
with the effective range of the intermolecular potential
(isec. within the collision region). This is to say that

collisions can be thought of as occurring at a point. The
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application of this assumption means that f(])(§1,t)f(1)(;2,t)
in the right hand side of Eq. (2.1-21) is replaced with
f(I)(El’El't)f(I)(El'ﬁz’t) where 51 is the position of mole-
cule 1, éi refers to the phase space variables of molecule i
excluding the spatial positiom vector, and §(2) (defined by
Eq. (2.1-18)) acts only on the Ei dependence of f(l). An al-
ternate statement of this assumption is that the partial de-
rivative, afil)/agi, is negligible in comparisom to partial
derivatives, afé')/aéi and af{1)/at, within the kinetic
regime,

The dynamical parameters which comprise‘§i can be divid-
ed into two groups. These are the freé-flight invariant and
noninvariant parameters symbolized by "vectors" X5 and ii'
respectively; For a dilute gas, the singlet distribution
function appropriate to the description of processes occur-

f(l) which satisfies

ring on a kinetic time scale (i.e. an
Boltzmann's equation) has a weak time dependence which in the

following analysis is approximated by zero. <Thus, one can

write,
afi(n ) afél)
X; *5== + ¢.° == =0 (2.1-22)
i axi 91 8¢i

vhere the "dot above" denotes the total time derivative (e.4g.
zl = dxl/dt). Because ¢; varies on the collisional time

scale, (i,e, it rapidly changes ever while molecules are
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widely separated) while X5 varies on the kinetic time scaie,
(i.e. it changes only as a consequence of collisioms), it
follows that the components of ii are large in comparison

with the components of Xi' Thus, af;’)/agi is corresponding-

=(1)

ly small, (is.e. ii is phase averaged), and hemce f. ' is ef-

fectively independent of nonfree-flight imvariants.

Conversely, fil) exhibits a sensitive degendernce on Xi'

(1)

Thus, Ei can be regarded as an exclusive function of Es

Xjr and -t

One observes that §(2) acting on some gemeral dynamical
parameter, Yig¢ of the two molecule phase trajectory gives
scme well-defined function of_g(z), YTZ' Furthermqre, if y12
is a function of only single molecule free-flight invarianmts,
then one obtains,

L (2) %
U™ dygy = (2.1-23)

(2)) (t-t )1 kY 4 xé')}

- (- (2)
(t to){ H }{ u ]

lim e
t =
o)

Y2

which yields,

(2) , . e (te (2)
{ 1Hy }y12 = lim e (t to){ (Hy }{Y12'V12} (2. 1=24)

t =00
o

Since v]2 is short range, it follows that the right hand side

of Eq. (2.1-2“) vanishes, Within the collision region, Ro
1,2



26

R , the product, f(i)(g ' £ ,t)f(])(; eE,et), 1is an exclu-
01'2 1 1721 1722

sive function of free-flight invariants and, of course, tine.

Thus, in Eq. (2.1-21) the term involving { ,Héz)} vanishes.,

This yields the result,

(1)
-a;f.: + { ,Hf”}f“)
(2. 1-25)
fax,z, 0 &P 4 K;n}g(z)fmfén
where f“)fé1) is now the abbreviation of f(])(gl'él't’x

(1)

£ (gl,gz,t). One immediately obtains the result,

(1) ( ' 1 1 (2) (1) (1)
o+ 'H§1)}f(1) = Jax, [ 'K: = Ké )}z1z§ £7°5
(20 1" 26)

TR TR QI PR FIR

12°%4

where use has been made of the fact that'{ ,KfI) + Ké‘)} is a
linear differential operator.
The differential operator, { ,Kf’) + Kél)}, has the ex-

plicit fornm,

(1) (1)
{ le + Kz }

(20 1-27)
3 5 . : .2 -
Vitas ot Ve 4 + b0
173z, oz T &173g, T 3,

where the relative position, r, is defined as L,~L, and the
velocities, ¥, and ¥ are defined as éI and é, respectively.
(The total time derivative is taken alcng a free-flight

trajectory.) Because Xi is defined as free-flight invariant,
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terms of the form, Xi'a/axi do not appear in Eq. (2.1-27)
since Xi is identically zero. Finally, one should note that
since { ,Kf1)+Ké1)} is simply the total implicit time differ-
ential operator appropriate to free flight motion, Eq,.
(2.1-27) is valid whether or not the cocrdinates and momenta
appearing on the right are chosen to be canonical conjugate
variables.,

In classical mechanics, a generalized coordinate which
does not appear in the Hamiltomian is termed cyclic or
ignorable, It follouws directly from Hamilton's equations
that the conjugate momentum of a cyclic coordinate is
conserved and that the time derivative of a cyclic coordinate
is independent of the coordinate itself. Since it is always
possible to choose conserved momenta tc describe free-flight
motion, it follows that ii can be chosen tc be cyclic, thus
allowing ii to be interchanged with a/agi in Eq. (2.1-27). A
nontrivial example of this is afforded by consideration of
symmetric top molecules., In this case, ¢, is comprised of
the Fuler angles, o (angle about the space-fixed z-axis) and vy
(angle about the body-fixed z-axis). The Euler angle, B,
(angle about the line of nodes) is free-flight invariant.
Explicit expressions for the rotational Hamiltonian, o, and y
are as follows (37),

I

_ .2 . I
H-T(B + Q

>(sin®)?) + 2(7 + dcosp)?  (2.1-28)
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L - L_cosB
& = 2 Y > (2. 1-29)
Il(sinB)
. L L - L cosB
Y = §L - cosB [~ (2.1-30)
3 Il(sinB)

where La and LY are momenta conjugate to o and Yy, and I, and
I3 are the two principal moments of inertia. One notes imme-
diately that a and y are independent of o and Y.

If one substitutes Eq. (2.1-27) into the first term of
Eq. (2.1-26), interchanges the time derivatives and partial

differential operators and integrates over ¢1, one obtains,

(1)
of (1),0(1) 1

+{ ,Hy' '}V = = [ag.a¢,[dy,[ar

T 1 ;I 1 =2 2/ "=2 (2. 1=31)

0 (2) (1) (1) > (1) (1) 10(2) (1) (1)
(57 w28 £ £, = {Z,, K, + K, "ISVE Ey ]

Here, the singlet distribution function has teen renormalized
with respect to integration over position and free-flight
invariants (i.e. n = fdgfdxf(1)(£,x,t) where n is the number
density) . The constant, B, is defined as fdi {e.g. for a
symmetric top, B = %?daifdy = 452)., It appears in Eq.
(2.1-31) as a conseé%enéz of the fact that the orientational
parameters, Ql and Qz, are nov not included in the

normalization of the distribution function.
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Following Curtiss and Dahler (38), one can construct a
set of curvilinear coordinates appropriate to the relative
position space by means of a family of surfaces which are

geometrically similar to ¢ and are scaled by a non-

negative dimensionless parameter, p. By definition, o, 5
[

corresponds to p equal to umity. If the scaling parameter is
regarded as a fuaction of positional and internal coordi-

nates, can be given the following form as a limit of a

2
12
continuous function,

v
z2,, = lim e”P (2. 1-32)

Vo

If one substitutes Eq. (2.1-32) into Eq. (2.1-26), one

obtaiuns,
55 + { H M = 1J.m{1-B jdg1dngdx2fd£2
AVE - )

(20 1-33)

\Y) AY
g (re ™ s eMell)y 4 e k(M 4 x[V)g@ MM

The integral over £ _ can be restricted tc a spherical volume

2

of radius, a, about molecule 1, such that the volume

encompasses the region R « Since the "cutoff" function
1,2

has been expressed as the finit of a continuous function, the

divergence theorem can be applied to the first term. One

obtains the result,
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2 ' v

= ia=P o (2) (1) (1)

0 = lim{%y[d¢.de,[d aty-Fe® g'E VE)TY (2.1-30)

A ;IJ £y _21 xzuiit = 2‘
sphere

Here, dr denotes a differential solid angle takem over the
spherical surface.
Recalling the definition of the Poisscn bracket and

making use of the result just obtained, one can modify Eq.

(2.1-33) as fcllows,

(1) . 4
oo el -y fonee/,

(2. 1= 35)

Vo

As before, the "dot above" denotes a tctal time derivative
taken within the context of free-flight dynamics. The dif-
ferential volume element-dg2 takes the following form in
terms of the previously introduced curvilinear coordinates,
dr, = pzdo(_z;-ﬁ)qul P (2. 1-36)

Here, [ is defiued as a vector from the center of mass of

molecule 1 to some point, Q, on the surface, (o] In the

1,2°
same context, k is the outwardly oriented unit vector normal

to o, , at Q, and dAO is a differential area element taken
!
1,2

as 0, , about Q. Equatiom (2.1-36) reduces to the usual
’
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spherical polar form if ¢ is chosen to be a unit sphere.,

In this case the scaling factor, p, reduces to the usual
radial coordinate. Curtiss and Dahler (3B) have given a
rigorous justification of Eq. (2.1-36) for all convex choices
°f 0y, 2

Substitution of Eq. (2.1-36) into Eq. (Z2.1-35) followed

by integration over p, yields the result,

(1)
gi + { ,H(l)}f(l) :
(2.1-37)
1 ' . '~ 2 1 1
g}fdgjdizdeZIdAot zp(i'k)§( )f( )fé )

where one notes that
v=1_=p"
limvp e = §(p-1) (2.1~-38)
Ve )

Equation (2.1-38) is easily established by the argument line,

©

® PRIAY e _1 oV
jdp(limvpv 1e™P )F(p) = lim ) gdpvpv e P

0 AVE. - . V+o j=0
_ J :] ® - - v .
(%|1) d jF(p')l = F(1){lim fdpvpv Te=p } =
’ dp'’ p'=1 v+ 0 (2. 1-39)

v
F(l)lim{—e-p E} = F(1)

VL o -

Here, it is assumed that the arbitrary function, F(p), can be
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written as a Taylor series and that the sum, integral, and
limit can be arbitrarily permuted.
A relative position, r, can be expressed in terms of the

curvilinear coordinates as follows,
r = opg (2. 1-40)

If one applies the differential operator, { ,Kf1) + Ké')}, to

both sides of Eq. (2.1-40), one obtains,
. - 3 L4 a -
v = BL * pld 3R + Sy g (21740

Here, o, and 0y denote internal coordinates cof molecule 1 and

1
mclecule 2. Contraction of both sides cf Ege (2.1-41) with

the unit vector, E, yields the result,

. '.l\ . ') | . .a .0 ) -
(L k) = (v - pﬁ1o-5g1-_p-a._2 5@ k (2. 1-42)

If one recalls that p = unity on Oy o¢ substitution of Eq.
’
(2.1-42) into Eq. (<.1-37) yields the form of Boltzmana's

equation obtained bty Hoffman and Dahler (36).
ag (1) D360 = 1 gy as, [y,
£ +(.m V) -7 Jae,48, )8,
(201"“3)
{ ) aa, Regs@eWMelD v oan,  fege!MelM))
.gp0 "2 f.go 2

-‘é¢.;= and is readily interpreted as
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the relative velocity of an incident molecule (i.e. molecule

1.2° The surface integral
r

has been divided into precollisional (k-g>0) and

2) with respect to the surface, ©

postcollisional (k-g<0) contributions and it has been noted
that 3(2) is the identity on the precollisional region of T g
’
If G is chosen to be a sphere of radius, b (ises
,2 max
maximum impact parameter), and if one allows bmax-to be
indefinitely large, then ome oktains the usual form of

Boltzmann's equation(2),

(1)
f

(2. 1‘““)
1 PR
;—]dg,dgzjdxzébdbédelxl (§‘2) - 1)f(”f§”

Here, v appears because 4 is independent of o, and %5 and
the definitions of the impact parameter, b, and the angle,’ g,
are the usual ones given ky Chapman and Cowling(39) or
Hirschfelder, Curtiss and Bird (40).

It has been tacitly assumed throughout this development
that 01’2 is differentiable, that is toc say that a unique
tangent plane can ke fouﬁd for each point on 01’2. Hoffman
and Dahler (36) have assumed the stronger conditiomn of
convexity in their development, For a convex 01,2 the
sucrface area element takes the form,

aA = dk$ (k) (2. 1-45)
01’2 01'2 ,
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where dk denotes a differential change in the unit surface

normal (i.,e, dk is a differential solid angle) and Sy (k)
is the Jacobian deterninant which describes the topological

deformation of the unit sphere into the surface 01 2°
7
In conclusion, the Boltzmann equation cam be writtem in

terms of a classical ccollision kernel, 0,

(1) ’
of
'5E (.I.’X] £) + { :H(l)}f(l)(_r_r.xllt) =

, (2.1-“6)
de1fd.Xzfd.Xé<X|.le@l X;Xz?f“) (x,x; 't)f(” (x.X5 1t)

where the collision kernel has the fornm,

kg6 (x,-xJ) 8 (x,=x3) +
(201‘“7)

n " ". 2 [ " [ ] "

k‘s.fdx'{fdlﬁG(X1’2(.1)5()$2'X2’§( )6.()_11-2;1-)6(2(2-12)]

<Y Xo 1O1XIXE> = = [ad.de, [ [ dA
1821214142 ;Zf—1 2k.é<0 Sy,2

] aAg
k'2>0 "2
The classical scattering operator, §(2), is taken to act only
cn X? and x5 and not X; and li' This expression behaves
like a matrix elemeant cf a differential operator im a coordi-
nate representation.
Finally, for the sake of completeness, the collision
kernel can be related to the specific transition rate defined

by Hoffman amnd Dahler (36),



<1 X, 101x]x5> = Jaxi axawix, X, 1x7x3)

[6(x?-x;)6(x5-xé) - 8(Xy=X) 8 (X=x5) ]

Here, u(xilex:x;) denotes the specific transit;on rate of

the ccllisional process, x" X"

.* L ]
&y T XX

2.2. A Derivation of the Waldmann-Snider Equationm

As noted in the Introduction, the Waldmaan-Snider equa-
tion was developed in crder to treat dilute gas systems com-
prised of molecules with degenerate quantum states, Like the
Boltzmann equation, it is of an irreversible nature and has a
clcsed form with respect to f‘1), which is a singlet Wigner
distribution function for the tramslational degrees of
freedom and a singlet demsity matrix for the internal degrees
of freedon.

The Wigner distribution function was fproposed in
1932(41) as a real-valued form for a statistical mechanical
phase space distribution function ccmpatible with the
Heisenberg Uncertainty Principle. It is a function on the
classical phase space which.gives the correct quantum
mechanical emnsemble averages, but uﬁlike the classical dis-
tribution fumction, it is notleverywhere nonnegative (note

that an ensemble average, <i>, is given in quantum mechanics
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by a trace of the operator, A, with the density matrix, Py
<R> = Tr(Ag)). Thus, one is cautioned that the Wigner dis-
tribution function should not be interpreted in a pointwise
fashion as probability demsity, but rather in a coaréer sense
as probability per sinimum umncertainty phase volume. Howev-
er, one should note that the Wigner distribution function
becomes the phase space distribution function in the corre-
spondence limit. For more information on these interesting
matters, one is directed to the work of Smith(42).

As with classical kinetic theory, one begins the devel-
opment with an equation describing the total temporal €volu-
tion of the state of a gas composed of N-molecules (i.€. the
von Neumann equation). Again,'for convenience, consideration
will be limited to a single compoment. The N-molecule deasi-
ty matrix, E(N), is the guantal analog of the N-mclecule
classical distribution function, f(N), and satisfies the

equation,

Here, a(M) is the N-molecule Hamiltonian operator and square
brackets denote the operator ccmmutator. The expression
given is the quantal analog of the Liouville equation and
follows directly frcm the quantum mechanical equatioan of
motion (Schrodinger's equation) in the same way that the

Liouville equation follows from the classical equations of
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motion (Hamilton's equations).

The reduced demsity matrix, E(s), can be defined in
terms of traces over degrees of freedom associated with the
molecules labeled by s+1,s+2,...N. This is in exact analogy
to the integration over the degrees of freedom of molecules
labeled by s+1,s+2,...N in the definition of £(8) (c£. Eq.

(2.1-5))« Thus, the reduced density matrix is defined by the

expression, . .
B(S) = ! Tr...Tr B(N) (2.2-2)
W=sTT o41" "N
wvhere p(N) is normalized to (i.e. has trace equal to) N! in

analogy to the classical case, Taking the trace of Egq.
(2.2-1) over the last N-s molecules yields the quantun

mechanical BBGKY hierarchy of which a general member has the

forn,
TR PP IO S S S PLC L P
ot =1 s41 | LeSH

Here, the notation, [ ,¥], defines a linear superoperator
(ise., a tetradic operator) which when acting on an operator,
$, results in the operator commutator, [3,9]. Again, as in
the classical case, it is assumed that the intermclecular
interaction potential is pairwise additive,

v(S) 1 -

8
=3 P V..+ ]V (2.2-4)
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Thus, the s-molecule Hamiltonian ofrerator is,

s 2 .
gl8) = 7 (A 2 4 gint (8 (2.2-5)
. 2M i
i= -
Here, Rint is the kinetic energy operator appropriate to the
th

internal degrees of freedom of the i mclecule,

In analogy to the classical development, the first mem-
ber of the BBGKY hierarchy gives the total time rate of
change of the singlet density matrix as a functional of the
pair density matrix., This is explicit in the expression,

- (1) '
. D (1) =(1) _ _ 5 _15(2) 2.2-6
ingg o+ [ LB 1P = gr[ 7,515 ( )
If the gas is dilute, the second member of the gquantunm
mechanical BBGKY hierarchy can be approximated by a two par-
ticle von Neumann egquationm near the interaction region (i.e.

quantum mechanical Liouville equation). It has the fornm,

: - & (2),=2(2) -
lh-s-t- + [ ,H ]p = 0 (2.2 7)

As in the classical case, this expression can be formally in-

tegrated to oktain the result,

) . oo g2 |
52 () = WBN D LB @) () 2a200)



39

In this expression,_a(z) is taken to be a linear operator and
. -t -(2)

e(l/ﬁ)(t to)[ fH ] is a linear supercperator which can be

written in terms of a direct product of linear operators. To

do this, one considers the two particle Schrodinger eguation,
-ind=|v> + 82 |vs = 0 (2.2-9)

where J¥> is the exact state vector for a two-molecule
system. The formal solution of Eq. (2.2-9) is,

- - =(2)
¥ (£)> = o7 /M EEIHTN g 41 (2.2-10)

5(2)

Here, e(i/n)(t'té) is a linear operator which acts on a

state vector. The density matrix can be written in a dyadic
forn, gphlwn(t)><wn‘t)l' where ]wn(t)> is an eigenket of p(z)
and is a solution of the pair time dependent Schrodinger
equation. The scalar, P is the real-valued eigenvalue of
,.&2) and can be given a physical interpretation as the prob-
ability of state ]wn(t)>. One obtains the following result
from Eq. (2.2-8),

5(2) (1) o o= (/M) (e-t)B) S (2) ()2 li/D) (-t82), o )
By comparison of Eq. (2.2-11) and Eg. (2.2-8), ome is able to

make the connection,
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e (i/m) (et [ 812

{2.2-12)
o (1/B) (£-t?) ﬁ(z)oe(l/h)(t 3 g2

here the symbol, Q, imglies a direct product of two‘linear
operators to obtain a superoperator. If i, E, and T repre-
sent arbitrary linear operators, the action of the direct
product superoperator, A@B, on € is given ty ACBT.

Assuming Boltzmann statistics, the assumption of molecu-
lar chaos in its quantum mechanical form states that for tJ
sufficiently remote in the past,‘B(z) can ke written in the

factorized form,

5@ e = M enal e (2.2-13)

In Eq. (2.2-13),.5(')(tg) and Eé')(tg) are singlet density
matrices describing the state of mclecule 1 and moiecule 2 at
a time, t4, respectively. Again, one notes that in a dilute
gas reginme to = té = tg can be found so that conditions inm-
plied by Egs. (2.2-8) and (2.2-13) are satisfied. One

obtains the analog of Eg. {(2.1-14) which is,

5(2)(t) -

.- -+ g (2) - (2) (2.2-14)
(i/n) (t t, )H “)(t )p“)(t )e(:./h) (t t )B
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The formal soluticn of Eq. (2.2-5), analogous to the

classical result is

5(')(t3:=
i/m) (e=t )BT (1) (i/B) (e~ (1) @.2-15)
e o’"1 p (to)e < +

t . -
[aeretivm wr-0aMe i/ er-na (V)
t

where J(t') is the right hand side of Eq. (2.2-6). As be-
fore, the first term oa the right arises frcm collisionless
molecular motion and the last term contains the effect of ia-
teractions, Here, the superoperators have been written as
direct products of operators by using the integral form of
the free flight single molecule Schrodinger equation and the
definition of @2 If one ignores the effects of ccllisions
(for exactly the same reasons as in the classical case), it

is possible to obtaia the analog of Eq. (2.1-16),

52 (¢) = AN AT A TS AT (2.2-16)

(2)

Again, one defines ﬁo - as ﬁ(z)'- V?Xt - V§Xt, and the opera-

tor 0(2)(to) is of the form(43) .,

~(2)
¢ (t) =
° ' (2.2-17)
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-(2) -(1) (1))

(1/h)(t -t)H (1/5)(t ~-t) (K

and the superoperator analog of the classical operator
defined by Eg. (2.1-17) is 0(%) (¢ yel® (¢ ).

If to is allowed to tend toward the remote past in
+)

U(z)(to) the Jauch~Mcller (44) wave operator, ﬁ( s Fesults,

In formal guantum mechanical scattering theory, the wave op-

erator, 0'*), is defined by,

~(2) =(1) =(1)
1im e(1/1’1)(t t)H -(l/h)(t t)(K +K2 %2.2-18)
t >Fo
(o]
If one substitutes Eq. (2.2-16) into Eq. (2.2-5) and takes

the linmit as to tends toward =<, one obtains the expression,

w0 (1) =2(1) _ (+ ) (1) (1)g(+) T
iBe— + [ .ﬂ1 1o -g‘rl 'V12]9 2 Q - (2.2-19)

This expression is the exact gquantal analog of Eq. (2.1-19).
When comparing Eq. (2.1-19) and Eg. (2.2-19) one notes that

the action of §(+)®§(+) on (]) (1) is analogous to the

s(2)

action of $ on f(l)fél). The lnterpretation is

complicated, however, by the fact that classical phase

trajectories are nonexistent guantally.

The action of the Jauch~Mcller wave oferators cam be

summarized by the expressioms,
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ﬁ(t)x = ‘l‘(:) ﬁ(:':)'i'\l,(-) = X (2.2_20)

- Here, X denotes the nominteractive wavefunction and w(i)
denotes a continuum scattering wavefunction. Physically, the
wave operator, §(+), transforms the wavefunction, y, describ-
ing interactionless molecular moticn (e€.g. plane wave) to a
continuum scattering wavefunction, W(+), with identical in-
coming boundary conditions. Similarly, 6(-) transforms the
interactionless wavefunction, X, tc a continuum wavefunction,
W(-) ., with identical outgoing boundary conditiomns. The
adjoint operators reverse the sense oflthe transformations.,
(The plus and minus superscripts specify inccming and
outgcing plane wave boundary conditions respectively.)

From Egs. (2.2-20) it might first appear that the Jauch-
Moller wave operators are unitary. However, this is ncot the
case if the intermclecular potential admits kound states

since,

al®ty 29 (2.2-21)

when )t operates on a bound state wavefunction, ¢ (in the

sense of a weak mathematical 1imit). By expanding any arbi-

trary function in a comélete set of interacticnless wavefunc-
ticns (i.,es {x}) and also in a complete set of interacting

wavefunctions (i.e. {y} and {¢}) and by making use of Egs.
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(2.2-20) and (2.2-21), the vave operators are seen to satisfy

the following expressions,

5215 (2)

-2}

(2.2-22)
(BNt _ 5 23 (2. 2-23)

where the operator, @, is a projection operator for the bound
states, {¢}» The operator, [, is known as the unitary defect
of the wave operators. If the intermolecular potential is
purely repulsive, there are no bound states, and thus i = 0.
A complete dynamical description of collision processes
is given quantally by matrix elements cf the scattering oper-
ator (i.e. S-matrix). The S-matrix is defined in terms of

the wave operators 2y the expression,
8= p(=)Tp(+) (2. 2-24)

The scattering operator transforms the incoming
(precollisional) asymptotic wavefuncticn intc the outgoing
(postccllisiqnal) asymptotic wavefunction. It follows from

Fgs. (2.2-22) and (2.2-23) that the relationsiip,

+

a®*g - gal®) < o (2. 2-25)

is valid., This insures the unitarity of the S-matrix. That

is,

gts = ast = 7 (2. 2- 26)
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An S-matrix element Letween asymptotic states can be inter-
preted physically as tte probability amglitude of a
collisionally induced transition from an incident state writ-
ten as a ket, to a final state written as a bra. The sguared
modulus of an S-matrix element is just the probability of
such a tramnsition, This interpretation makes it desirable to
write the right hand side of Eg. (2.2-19) in terms of the
scattering operator rather than the Jauch-Mcller wave cpera-
tors.

In order to carry ocut this prcgram, it is necessary to
use some results from the formal theory of scattefing. The

vt ana v(°) are exact solutions of

continuum wave functions
the twc molecule Schrodinger equation which can be writtem in

the integrated fornm,

NG yl®) (2.2-27)

() _ = (
Yg ' = xg + Gg V¥

E Xg
which is known as the Lippman-Schvinger equation (28). Here
is an asymptotic state with energy eigenvalue, E. The opera=-
tor, ééi), is the Green's function for noninteractive scat-
tering and is defined by the expression,

88" = vimte - & - &{V 2 517" (2.2-28)
e+0
If one uses contour integration to evaluate a given nmatrix

element of ééi), it is clear that it can be written as a
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Cauchy principal value integral plus an explicit essential

(£)
E

singularity, in whick case & takes the fornm,

& = prE-k{Vg{"17") 3 nise-r{VR{") (2.2-29)

Using the definition of the Jauch-Ncller wave operators, and
the Lippman-Schwinger eguation one obtains an operator ex-

pression,

al¥) = 74 éé*)ﬁizﬁ(*) (2. 2-30)

which is appropriate to action on an asymptotic state with
energy eigenvalue, E,
The transition operator (ise. T-matrix) is defined by

the operator equation,
1) o g oal® (2.2-31)

In order to express the quantal collision dynamics in a form
which corresponds to the classical ccllisicn dynanics, it is
necessary to find an explicit relationship between T and §.
With this objective in mind, one can easily establish the

following identity,

%mR(z) ~2%¢ﬁé2) %tR(z) T %W'R(Z)
e e e =1 - ﬁjdt'e (2.2-32)
0
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. -ziT.H(Z) ‘2;7' ﬁé2) %[‘(2)
v,, °© s+ e v, le

Here, K(2) is defined as k(s R§1). It fcllows from Egs.
(22-18) , (2.2-24), and (2.2-32) that the S-matrix can be
written as,

S =

(2) 2den®) ol lH(z) L2

© TK
B v, 5 B™o + e Viple  (2.2-33)

fdre

An infinite series expression for S is obtained by successive
substitution of Eq. (2.2-32) into Eq. (2.2-33) followed by
evaluation of the integrals. After lengthy manipulation, the

fcllowing result is obtained,

" 8=1- 2w16(E)V12 Z é )912) - (2.2-34)
=0
The operator series appearing on the right hand side is imme-
diately recognizable as the well~-known Born expansion of the
T-matrix which is e€asily obtained from Egs. (2.2-30) and
(2.2-31) by iterative substitution. Thus, the S-matrix is

related to the forward scattering T-matrix by the identity,
8 =1 - 27i8(E)® (2. 2~ 35)

Hereafter, T will refer to the forward scattering T-matrix,
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T(+), and the notation S (E)T is explicity defined by the ex-

pression,
<m|§ (B)T|n> = S(E_ - Em)<m|i~|n> (2.2-36)

(B, and E  are total ene;gies of states |m> and |n>). The
scattering operator has nomnzero matrix elements only between
states which have the same coustants of motion (i.e. S is en-
ergy diagonal, total amgular momentum diagonal, etc.). An
expression for the T-matrix in terms of the S-matrix can be

obtained by defining operators, S and T, as follows,

§=J[aES + T .., T = [aET. (2.2-37)
Here, Toff is comprised of off-shell (i.e., noandiagonal ia

total energy) T-matrix elements, the integral is taken over
all possible energy eigenvalues, and the inverse relatioas

for § and 1 are,
§=6(E)S, 1 =68(BT. (2.2-38)
Fiom these definiticns one easily obtains,
F=d(EFE-T (2.2~ 39)
27
One should note that T, §, and T have units of energy and
that S and 1 are dimensionless.

If one combines Eq. (2.2-39) and Eq. (2.2-30), one

obtains the result,
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(+) _ i gl1)_ (1) T_TY. 1 ,a.3 -
& = =P ([E-R, 171 (38-T) + 5(8+7) (2.2 40)

Here, E is the energy eigemvalue of the asymptotic state
acted on by S-7. Using the identities given in Egs. (2.2-39)
and (2.2-40) allows one to simplify Eq. (2.2-19) in terms of

the scattering operator. This yields the following expres-

sicn,
-g-é‘”+ am a1 = leeggde mms (V0N BN -
t h72

1)=(1) =t st . Ligmyal)=() at s S
5= (8- -0 MV ET-nel + 3N V5N BT+ (2z-u

where ?E is the self-adjoint operator E([E-Kf”-xé')]'
In order to simplify Eq. (2.2-41) further, one notes
that the density matrix appropriate to the description of a

single dilute gas molecule can be expressed in terms of sta-

tionary states as follcws,

FALE. - - (i/B) (E_=E_,) (t=t_)(2.2-42)
) gg.ann'(t to)lgn><gn,|é nn o

One shculd note that B(') satisfies the lowest order eguation
of the BBGKY hierarchy and that the state vector,,jgn> is a
solution of the single molecule time independent Schrodinger

equation. Here ty is an arbitrary time origin., For a dilute
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gas, ihe assumption of molecular chaos implies that the sin-
glet density matrix is taken as tempofally constant on the

collisional time scale. Thus, the quantity, ann,(t-to), can
be replaced in Eqg. (2.2-42) by its collisional time scale av-

erage, a. The resulting expression is averaged over an

nn'"®
interval, Ty =Ty which is long compared to the mean duration
of a ccllision Teoll ’ but is short ccmpared to the mean in-

terval between collisions, Tye that is to s=ay,

T
-(1) _ (i/M) (E_~E_,) (t-t_)
p = ',?;_—_-;E—]- f dtzz a n,lg ><gn,|e nn (o)
1
T\ > {12-1, (2.2-43)
T <L '
coll

From this it followus that 5(]) is approximately proportional
to G(En-En,)(i;gL it is approximately energy diagonal).,

Ignoring energy nondiagonalities, ome obtains the

result,
a5’V 1 () .-(1) 1
3¢+ (iR) [ fYHY P =2hT§[((S—1)9(s +7) +
(8+Dre(E -5 V5l (2. 2-44)

The first two terms cancel each other since application of
approximate energy diagonality glves that E (§-1)”(1) é')(s+-T)
is equivalent to (S=1)p(')pé')(s+-T)PE in Eq. (2.2-41). This

expression can now be written in terms of a collision
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superogerator in analogy to Eq. (2.1-4€),
oy T p ), el = w85, (2. 2-45)

The ccllisicn superoperator is of the form,

3= %—(§e§ - 787) (2. 2-46)

Due to the energy diagonality of 5(1), the bar and tilde are
interchangeable. Thus the simple form of ® follows directly
from Eq. (3.2-44)., The structure of the quantal collision
superoperator bkears amn obvious similarity to the structure of
the classical collision kernel givemr in Eq. (2.71-47).

Before proceeding tovthe final stages of the derivation
of the Waldmann-Snider equation, it is desirable to introduce
a "doublie bra-ket" notation, ]n[n']+>>, which denotes a
direct product basis appropriate tc a Hilbert space in which
the usuval linear self-adjoint operators of quantuh mechanics
appear as vectors. A matrix element in this representation
appears as a tetradic form (superoperator) in the usual
formulation of quantum mechanics. For examgle, if
superoperator, i, has a direct product form, B®C, it follows
that a superoperator matrix element, <<m[m']+|§|n[n']f>>,
equals a product of ordinary matrix elements, that is
<m|ﬁ|n><g'lc+lm'>. The lower case letters, m and n, are used

here as collective symbcls for the appropriate quantum num-
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bers.
Continuing with the derivation, one next expresses Eq.

G
(2.2-45) in a momentum representation. If'lgg> is a state

appropriate to the jth molecule with definite momentun, Ej'

and definite internal state given by a set of quantum nun-~

bers, 0., Eq. (2.2-45) can be written out explicitly as

follows,
g! 0,. os
R I CE VSR CALU S e
] . B, B

jdp_ dpidp;dp << °1 2( 5 0702( %jr» (2.2-47)
1 1°e2 PiR R,P. R5

Now one applies Wigner's Fourier transform(41) which ex-
changes one of the momentum variables (indices) of a matrix
element for a coordinate variable (i.e., transforms tc a

phase space representation). For a matrix element of an ar-

bitrary operator, 2, in a momentum representation,

<oW{&|r,p}|o'> = 8fdp R+E-|A|EE >e(2i/R)p'-xr (2.2-48)

Here, W denotes the Wigner transform, that is, W{i|r,p}

denotes the transformed image of operator, . The inverse

transform is,
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> " ;15 Jar<o |[w{&|z, %(p+p")} |°'>e-(i/h)£.(2-2'()2.2-u9)

The image, W{Klf}, is a function of the classical phase vari-
ables, r and p, in the translational degrees of freedom but

. remains a quantun mechanical operator in the intermnal degrees
of freedom. A4l1ll quantum mechanical operators can ke
transformed in this way. For operators that correspond to a
simple function of coordinates or momenta, but not both
together, thé image function-operator, W{A|~}, is ideatical
to the classical form. For operators vhich are functions of
both position and momentuh, the image function-operator is a
'power series in h, with the lowest term having the classical
- form,

If X is the singlet density matrix, then W{|~} is a
singlet Wigner phase space distribution function in the
translational degrees of freedom, kut remains a singlet den-
sity matrix in the intermnal degrees of freedom. The Higner

distribution function is defined as follcws,

f;;)'(EvErt)"‘ l_—:3‘<0|w{5(” lz,p,t}]o'> (2. 2-50)

where the factor, h"3, is included to give fé;{(g,g,t) units
of probability per phaée space voliume, Using this expression

and its inverse in Eg. (2.2~44) yields the result,
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2z (1)

5‘°1°'(r 'Ry t)

b 7 —um?® o)

A o g o' tr}(2n+1)
n=0 47 (2n+1)! 1

(r 'E]’t) H +

(iR)~ z[f“’ (r,.p,,t)HIRE _ gint (1)
ny 1M 155 o °1”1fn1°'(r 'Ry )] =

8 ' . . o
;3§£d22§%§ de%dEédETdaéde{e(21/h)EL £1fdg;e“l/h’£1'(ej-2{>
. c’o

12

farye” W/MIES" (Br B3l ¢ 02( NG 0'02(0105f>>

By*R; By \Ry~Rj By BiRs \RiRS
1) (et pitpe) 00 £ (2 ki (paaps) 1)
o’i ll =1’? 2 E] o gé =27 Ré 22 ’ (2.2=51)
He.re'Htr refers to the classical singlet Hamiltonian function

1

for the translational degrees of freedcm and H;nﬁ
1701

matrix element of the gquantal singlet Hamiltonian operator

is a

for the internal degrees of freedom. The notation defined by

the exgression,

I I =
{a,8}" - 2 =03 n_3<3-.a)1@[3 7 (22 a)) (202-52)
j= ap” ™I axd B eI ppd

occurs in the Wigner transform of the ccmmutator bracket,
[A,B]l, and may Le thought of as an extensiom of the defini-
tion of the Poisscn bracket to order, n.

As in the classical development of Boltzmann's equation,

one assumes that there is very little error intrcduced by re-~
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placing f(I) ( t)f(1) (r"BZ't) with the product,
1

o cé
£ 1(51, g t)foicé(‘I'ﬂi't)° One can immediately integrate

9191

over r;, gé, E%: and pé. Making use of the resulting delta

functions, one oktains the following result,

(1) |
%zo]o'(r1'21't) + {f(‘).(r ,E,,tJ,Htr} +

(iR) " Z[f(1) (r,,g,,tﬁiint; —gint £ (1) o 1Ryt =

1M N0y 04NNy 0,
8n°}fap,] J[apsdpsfapje?/B) (BI°E)  (2.2-53)
(o 8 oo
2 oot
( °1°2(°1‘°é)»
21 +21 22 PR} B 9_1 P5\P{Ps

(1) (1)
fcfa%(r 1 Rj B ES 20é(r ,22,

Here, terms involving { , }(n) for a>1 have been ignored.

This is rigorous for the kinetic ccntribution to B?r because

the translational kinetic energy has the explicit form, pf/zn,

vhich gives rise cnly to the usual Poisson bracket. It '

is only aj proximate for the external potential energy contri-

tr
i

tion because on a mclecular scale external potemtials can be

bution to H However, it should be a very good approxima-
expected to have a very slow spatial variation.

Any binary vollision process must ccnsarve the overall
momentum, which means that the scattering operator is

rigorously diagonal ia this quantity. Applying this
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conservation property to the definition of the collision

superogerator results in the expression,

1’

9192
>> = 8(p,*+P,"Ri~R5)

BBy

al'oé
BB2

+|6|0102 o303
RiRs |R{R3
o;oé)+ — oici(c{oé

<L

1‘ (2-2"54)
t4ploplopl)<< 1 2 >>
*(Ri*R2Bi"R2)<p,, |pi, Ris | Bis

Here, the notation Eij {(and Eaj) denotes the relative momen-

tun between the ith and jth molecules, That is,
= Hijp. - Eij 2.2-55
Bij M;JRj M;Jﬂi (2. )

where Hi and “j are the masses of wmolecule i and molecule j
and y,. is the reduced mass of the pair, Miﬂj/(ui+nj). Sub-
stitution of Eq. (2.2-S4) into Eqe (2.2-53) and integration

over E} and E, yields the Waldmann-Snider equation(26,27),

(1)
25010{(5'21't) + {fé1).(g,21,t),ﬁfr} +

ot 191

iy =1 (1) int _ pint (1)' 'Pyet)) =
‘ 0,08 [olo.\t _ 0.05 [ctcd|t
3 . 172 (P12 Nz 120172
h°}fa dps: [aps8 . _, << 18] ... >>
4 Ezgggé Bi7%2% 05 Ty, Elz) i3 |Ris
UiO’z

)

‘ (D) (1) | -
8 (21+22-Ei-22)f0i07(£,2i ') fc,é‘:,5 (5,22:1:) (2.2-56)
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which is the quantum mechanical analog of the classical
Bcltzmann equation. |

| It is possible to write Eg. (2.2-56) in a form which
very closely resembles the classical expression. To do this,

one first defines the superoperator, 0,

-l’
-

5 = —(éeé” ie (24 2-57)

Use of Eq. (2.2<-37) allows the tetradic wmatrix element of 9

appearing in Eq. (Z.2-56) to be written in terms cf 8,

0,0, jclor\t _ o020 ciloci |t
<« V212 13 1’? 1‘? SS =

Bi12 | By2 - Bi3 |Ri3 y 5uss
® 1 02 0102 oo 0503 c;oé + (2.2 )
]dE<<p(E) {0 | Bis B >>
0 Pi2 Bi2 Bi3 3

where 5,2 is a unit vector parallel to (912 and p(E) equals

(1nt))] (E(lgt) denotes the energy of the inter-
172

and 02.) The integral over E can be

[2U12(E E
nal quantum states, 04

changed to an integral over p as followus,

(20 - 59)
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0,0 glollt . 00 cgiot\t

>>
”12 pplz Bi2 Biz |Bis

where use has been made‘of the fact that dE/dp is p/u12°

It is possible to introduce an integration over definite
impact parameter into Eg. (2.2-59) by means of the standard
partial wave expansion. (jl denotes a spherical Bessel fuac-

tion and Y? a spherical harmonic),

i
—=DeY o0 Z
S i*j, BEH Y B)YY (B) (2. 2-60)
£=0 m=~L
- which gives,
p> = I Z ip71¢™" (3) | pem> (2.2-61)
£=0 m=-{ L

If the impact parameter, b, is defined as,

p o HIL(L+1)%

p (2.2-62)

then |pfm> is related to |bfm> via the expression (note that

ldbsdp] = KL (L+1)1%/p3),

X
|ptm> = m.z,_(;“” | bem> (2.2-63)

This gives the result,
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o 4 2 A .
|lp> = 1 § itim 32‘“”] Y™ (B) [bem>  (2.2-64)
£=0 m=-f p :

If one substitutes Eq. (2.2-64) into Eg. (2.2-59), regards p

as a function of b and £ (i.e. p = Ppp = b_15[£(£+1)]%)' and

changes the integration variable from f to b, one obtains,

0.0, (clold + O0:0« [O30d\ ® o £
Bi2 | B2 Bis {’-12 0 £=0 m=- 2.2-65)
. =p - O
Ppe, 1 Ppp m 0105 0192 \* 29193 (9192}
H12 [R°L(2+1)] Bi2 i3 | Bi2

An expression for the inner product of a state of definite
impact parameter and defimite linear momentum is easily ob-

tained from Fq. (2.2-€4),

L2 A 2 S
_itmte(e+1) 1% m* o neL(L+1
<blm|p'> = p"z L™ 3166 - ;ﬁ 11y (2.2-66)
Using closure and Eg. (2.2-66), the tetradic matrix element

appearing on the right hand side of Eq. (2.2-6€5) is rewritten

entirely in a momentum representation,
3

0,0, [orar\t _ o:04 [otodlt o @ p P
«21 2 (172003 T‘é 1‘51 >> = [bab § (=24 2b£
12 | Bi2 Bis | Ris | 0 2=0 *12 nh%e(£+1)

(2. 2-67)
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o\t _ o504 [0tos
(2£+1) 1y 192 [%192|T 5 91%5[%1%3
AP pPp (By 5 ° Py p) << 18] .. L >»
bE"L™F12 Tbt” Tppy | Bi Bi3 |\ Bi3
Here, use has been made of the identity,
§ B Y (B, = 2 (5 -p ) (2.2-68)
nl e P12) Yy (Ppp) = T FplPe2 Ppe

where Py(~) is the £ order Legendre polyncmial, and By is
PpePpee
The tetradic matrix element can be expressed in terms of

a phase space representation by means cf Eg. (2.2-48).

6,0, 0lod T+ = cr %
405 0303 T = 0405 0103 _ 1
«€Ey® B1z I®lBis BiF > - W —~y/dz; dr;

<<0,0, (0] 62)+|W {hé|r1.%(2b£ + Blﬁ)lrzr%(ﬂlz + pys)}

. i i
" (Bpp=Ris) -~k 3" (Ris~Pq2)
los 02(0105)T>>e ﬁr ' Bpe7Ei2 e B =27 R (2. 2-69)

Here, WZ{ lnlm} is an extemsion of the earlier notation (cf.

Eq. (2.2-48)) and denotes the "squared" Wigner transform

whick is defined for a general superoperator, G, as follows,

2,2 < 2
W {G|£1,E1|£2,22} = 64fap) [ap, <<p, + P} (R, * Eé)+|G|
(20 2-70)

B, - B} (B, - By ) T>> o (2/M (R} "I;4p)y °I))

It is consistent with the previous localization assumption
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(energy diagonality) to reglace both g; and r! in Wz{h§|f|ﬁ}

with an asymptotic position, I which is exclusively a func-
tion of the impact parameter. This procedure allows omne to

evaluate the integrals over g; and r!,

0,0, [clorl+,*,0.0,(0rcl\t .
1"2 0172 el a2 12 _ .
KPpe {212 Bis | B3| >> = 8(Rpp-Ry5) 8(Ryp~Pi5)
(2.2‘71)

1 ti..2r 8 a . ot

<00, (0703) " |WihO |y pyylry by, }logos (o]os) >

If one substitutes this result intc Eq. (2.2-67) and nctes
that P£(1) = 1, one obtains,

0,0, (002t -
1929492]| 7 = 1 _
«<pyy |By2| 1®1Bj5 |Bjs | >> =

17 T A (n2 5 '
3 (f)bdbz“l;‘llzzoA(Pbl)pbf. J8Bp8 (Bpp=R12) (3. 2-72)

vy T ' P
<<0,0,(070,) |W2{h5|£b'2bz}l°i°2‘°%°2)+>> § (Py,pP127P75)

where A(pgl) equals 52(2£+1)/b2 and jv| 1s the magaitude of
the relative velocity (i.e. Vv = 212/“12)'

If one compares Eq. (2.2-56) to Eq. (2.1-46), it is
evident that the quantal amalog of the collision kernel is
obtained by combining h35 with the center cf mass nomentunm
diagonality. Furthermore, from Egs. (2.2-72), (2.2-57),
(2.2-56) , and (2.1-47), it follows that the quantal analog of

§(2) is.wz{ses}ap {here Gp denotes the center of mass momen-
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tum diagonality). Using the form of ) supplied by Eg.

(2.2-72) , one finds that the quantal collision kernel is,

©o

2 -
Z %A(sz)Pbefdpbz

g,0! 0,04 0.0 © oi ®
1 7272 1
<p,' 8,20l By gé > = 2ﬂfbdb|g|£=o

N S
{8(p,p=y,)<<0,0, (0102) T |w? {868} - l|0102(0{05)+>a2.2_73)

®(Bpp = Big)}SiRy * By - Bf - Bg)

In the usual case, translational motion is treated classi-
cally, and thus the sum over.£ beccmes an integral over pﬁz
(pb£ then becomes indegendent of L).
The Waldmann-Snider equation cam be writtem in a form
analogous to Eq. (2.1-44),
02 (1) 2 per (z(1) gint,
ot a in = ©(2.2-74)
Tr deQdewalzl(W2{§Q§}6p - nzihz(D
int 0
2
Here, the tilde denotes am operator on the internal state
domain and fgl denotes a trace taken over the internal states
of molecule 2. Because of the quantal nature of the internal
states, (2.d.., roﬁational angular momentum and orientation
cannot be simultaneously specified) the orientational inte-

grals do not appear and the integral over: e trivially reduces

to 2w,
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Finally, for the sake of completeness, it should be
noted that 0 was originally expressed ky Waldmann and Snider

in terms of the T-matrix,

8= glife gt - ifeT + 216 (8)Tet) (2. 2-15)

If this form is sukstituted into Eq. (2.2-56) and only
nondegenerate systems are considered, one obtains,
(1) (1)
n3 n,n n,Mn
z fdpz{ -i< 172 ' *T+| 172
n2 B2 B2

Z fdp_,fdaz 2m < 2 r'2 |F]. “f“z > 2

I

-1

(1) | (1)
2E T Eapy et E T (z,p, ) +
B n, ‘= By

' ' ' (1) ’ (1) ’ S
6(E1+22 - 21'22)5(3'3 )fn; (E'E"t)fné (E’EZ’t}'(Zf‘ 76)

Here, n denotes a quantum number approgriate to mclecular in-
ternal energy states and E denctes total energy
{translational + iaternal).

One easily obtains the following operator identity from

Egqs. (2.2-29), (2.,2-30), and (2.2—31),

p(¥) _ ()t _ 5(2) ‘(*) a( )T ()7

(22-717)
_zﬂii(i)é(E_i(Z))ﬁ(i)f

which results in tbhe well-known optical theorem if matrix el-

ements of both sides are taken between energy diagonal
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states. Substitution of Eqge. (2.2-77) into Eqge. (2.2-76)

yields the Wang Chang~Uhlenbeck equation(25).

(1)
%;fc-”l (£,p,,t) + {f,(,})(g,p_,.t).ﬂ

2 nyn _

fap,I Japil Japyl t5F 1< V2 oqE| )
n,  n ny © B2 Pj2

(
n

tr, _

1 } =

nlnl -
10 %6 (e y+pympi-py)

2

s(e-EM] B3V (z,p1, 008

1)
' o (x,py.t) -
n1 2 - 22

(2-2'78)

(), (1)
fn1 (_{oPI ' t) fnz (E’EZ’t)

The quantity in the square brackets is a quantal expression
for the specific tramsition rate, w(~|=), (cf. Eq. (2.1-48))
which is appropriate to the collisional process,

21.2:‘2,711 r'ﬂé -+ 2y 1220711 Mo

2.3, Formal Correspondences and Symmetry Proferties

of the Generalized Collision Keranel

In the preceding éuo sections of this chapter, the
classical Boltzmann eguation, Eg. (Z.1-44) and the Waldmaan-
Snider egquation, Eg. (2.2~74), and itslsinglet density matrix
counterpart, Eq. (2.2-05),'vhich describe the temporal behav-
ior of dilute gas under appropriate conditions have been de-
veloped. In the iight of demonstrated structural analogies
between them, it comes as no surprise that ome formal expres-
sion can be written which embodies all. The purpose of this

kind of approach is to reveal the underlying similarity of
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the classical and yuantal kinetic equations without the cum-
bersome mathematical machinery associated with the detailed
dynamics., With this in miand, one can represent these three
equatiohs by a single expression as follcus,
<tle> + <rltig,aM ) = (2.3-1)
fd1'fdzjdz'<xlz><12|9|1'2'><1'|f><2'|f>

Here, Jf> stands for the singlet distribution function-
density matrix and can be fhought of as a vector in a
function-operator space, Hj (] refers to molecular labels 1
or 2). This is analogous to the usual construction of state
vectors found in guantum mechanics, Basis vectors (function-
operators) apéropriate to Hj are denoted in Eq. (2.3-1) by
the symbols }j> and {j*>. This basis is assumed to be con-
Flete. The symbol, fdj; denotes integration-summation over a
continuous-discrete set of indices which label the basis
vectors and the symbol, I, is the rultiplicative identity-
operator. Finally,'{{f,ﬂ(])}} gives the inmplicit time deriv-
ative of the singlet distribution function-density matrix,
It is identified quantally as aa operator ccmmutator,
(iﬁ)"‘[p(l),H(1)] and classically as a Pcisson bracket,
CALUBILEE

The collision operator-superoperator, g, cah ke regarded

-~
-~

as an operator on a direct product function-operator sgace,

H 2 = H19H2° It follows that a conplete basis appropriate

1
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to H,, :is given by the direct products of bases for le,and

12
H,e Thus, in Eq. (2.3-1), basis functions of H12 are denoted

2
by 112> = [1>}12>.

The function operator space, Hj (cr HIZ)' is defined to
have an L2 norm with regard to functions and a Hilbert-
Schnidt norm with regard to operators. Thié spéce is larger
than necessary since any admissable distribution "state
vector™ must, in fact, converge uander the 1! norm and/or
belong to the trace class of operators (i,e, any physically
realistic distribution has a finite normalization). 1In the

present notation one oktains:
Ne = [fai1<i[£> (2.3-2)

where Nf is a scalar coastant (conventionally yf is the local
molecular number density of the gas, n, however other
normalizations are possible). The advantage of using the
larger L2/Hilbert-Schmidt norm instead of the Ll trace class
norm lies in the fact that the former admits a well-defined
inner product. Finally, for future reference, one should
note that the function-operator space appropriate to the
usual Chapman~-Enskog kinetic theory differs from Hj'as the
result of the inclusion of a weight in the norm.

It is well~known that physically realistic Hamiltonian

function-operators are invariant with respect to any rotation

of the external reference frame. Thus, the classical scat-
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tering operator, §(2), and the quantal scattering
superoperator, §®3+, are also rotationally invariant. As a
conseguence, O, exhibits rotational invariance which can be

formalized in the following expression.

Here, 5 is the unitary rotation operator defined om H12'
Similarly, if an isolated molecular system is composed
of nonchiral molecules, it is mechanically invariant with re-
spect to inversion through an arbitrary symmetry center or
reflection through an arbitrary plane. Again, §(2) and 3081

exhibit this invariance and 9 obeys the exfgression,
t -

In this case, E is the unitary parity operator defined on
It can further be noted that P (unlike R) is a self-inverse
operator (i.e€. E = §+).

The last symmetry principle to be considered in this
discussion is that of time reversal invariance (microscopic
reversibility). It is particularly important since it pro-
vides the proof of the Onsager-Casimir reciprocity relationms.
The effect of time reversal is to reglace §(2) or §6§i“*
with its adjoint, that is §(2)+ or 87@3. This is easily seen
if one reverses the sense of time in the defining equatioans,

Eqe. (2.1-18) and Eg. (2.2-24), This yields the result,
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-+
[

et =107 (2.3-5)
where I is the unitary time reversal operator defined on H12.
As with parity, time reversal is also self-inverse (i.€., I =
I*). Thus, one can write,

To=0 T (2.3-6)

which implies that the product operators, TO and QT, are

2

self-adjoint under the L“/Hilbert-Schmidt norm.

2.4, 1The Macroscopic Conservation Equations and the H-theoren

The average value of single molecule physical parameters

can be computed via the expression,
A =<l = faika| <[ (2.4-1)

Here, A is a time independent function-operator corresponding
to an arbitrary physical observable and <A> is its average
value in an ensemble described by f. From the explicit form
of <A]1> and <£f]1>. it follows that <A> is an average over a
function, A, and a protability distribution function and/or a
trace of an operator product of A with a density matrix. An
equation of change for <A> is obtained by contracting A into
both sides of Eq. (2.3-1) and symmetrizing with respect to

mclecular labeling. It has the form,
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asg 1., (2) ., (2) ' 5 4
<Ma-E > = A, lglff> (2.4-2)

where the total time derivative is defined by,

(1)}} (2.4-3)

d 9
ae =e * L0
The definition of quantities appearing on the right hand side

of Eq. (2.4-2) are,

<12[al24alDs> = <r|a><2|> + <1p><2|a> (2.4-4)

and
Q12|££> = <1[|£><2|£> (2.4-5)

Since A is not an explicit function of time, one obtains the

result,

3>+ <aliie,m > = 2?4 alP jglee  (204-6)

In the case that A represents a summationally invariant
physical parameter, then Al(z) + 3(22) can be regarded as an ei-

genvector of O with a zero eigenvalue. This results directly

from the conservation properties imgplicit in §(2) or Sesft.
Thus, one obtains a macroscopic comnservation equation for

<A>,

>+ <alitg, 581> =0 (2.4-7)
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Specific examples of Eq. (2.4-7) occur if A is mass, linear
momentum or kinetic energy in which case one obtains £he
hydrodynamic equations of continuity, moticn and energy bal-
ance,

The H-theorem gives a quantitative statement of the ir-
reversible behavior of the kinetic equaticm applicable to the
temporal description of a dilute gas. 1In particular, the H-
function is defined by the expression (£n is the natural

logarithnm),
H= <Inf|f> = [d1<tnf|1><1 | (2.4-8)

Here, H is a real-valued function of time. The total time

derivative of H is urittem as follows,

aH _ ' a_, -
gt = Ja<nf+r|1>E<1 6> (2.4-9)

Using Eq. (2.3-1) one can express the time derivative of H in

terms of the collisiaon kernel,

S = j<tnfrlo[£e> + <1o|£e> (2.4-10)

Here, the right hand side has been symmetrized with respect

toc molecular labeling by making use of the identity,
<12|Lnff> = <1|Lnf><2|I> + <1|1><2|ene>  (2.4-11)

It should be noted that a function of an operator (€.g. &nf
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where £ is the density matrix) can be defined by transforaming
the operator to a diagonal representation via unitary
conjugation, applying the function to thé diagdnal elements
(L.e., eigenvalues), and then transforming back to the crigi-
nal representation. With this in mind, it is clear that Eg.
(2,4-11) follows for a product of singlet distribution
function-density matrices from the elementary definition of

the logarithm of a product. Finally, cne obtains the follow-

ing exrression from Eq. (2.4-10),

= Ltnselp)ee> (2.4-12)

since I is a zero eigenvector of 9 (and Q+).

In the classical case, it is easily shown (using inte~
gration by parts) that §(2) can be regarded as a unitary op-
erator. Quantally, an analogous property can be established

for 58T

directly from the unitarity of the usual S-matrix.
If the symbol, s, is a generalized notation for 8(2) and/or
SOS* (i.60 § is upnitary on’H ) and if A(z) and B(Z) repre-
sent arbitrary le vectors (i.e., classical functions and/or

guantum mechanical operators), then ome can write,
<a? o185 = farca'? |g-1182)> (2.4-13)

Here, the symbol, 1, denotes the le identity operator and
the symbol, de, denotes the apgrorriate integrations over

impact parameter or relative translational energy
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and.oriehtational parameters (if appropriate). If one arbi-
trarily adds zero (ise. %<ff|@lI>) to the right hand side of

Eq. (2.ﬂ?12) and sukstitutes Eq. (2.4-13), one obtains,

aH _
dt

%fdr[<£n§(ff)|ff> - REE|£E> - <S(££) |I> + <E£|I>N2.4-14)

The operator-superoperator, S, can be brought into the argu-
ment of the natural logarithm due to the fact that it can be
written as the limit of a product of exponential fcrums.

If ff is a positive real ands/cr positive definite self-
adjoint function-operator, it follows that E(ff) is also pos-
itive real amdsor positive definite self-adjoint. Thus, one

can write,

w
AO Al
ag _ _1 i, _ i -
It 2fd1 f% Bij[ﬂn(Af) 1+ Ai]Ai (2. 4=15)

J

where'ki and A; are components of ff and S(ff), respectively.
Classically, Ai and Af are fuactional values (i.e. non-
negative real numbers) of f(l)féi) and §(2)f(])f(1) and
guantally, they are eigenvalues (i.e. again nonnegative real
numbers) of,5(1)5§1) and‘§5(1)551)§+. The quantity,séij, can
be identified classically as a delta fundéio;} §;.0 aud

1]
quantally as a transition probability, Isiﬁl?.'ns an immediate

<

consequence of Eq. (2.4-15) and the fact that

Lnx - 1 + % is nonnegative for all real positive values of x,
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it follows that,

aH 2.4-16
at <0 ( )

Thus, H is shown to be a nonincreasing real function of tinme,
It can be shown that for any dilute gas system which has
a finite average energy, the H-function must be bounded in
time from below, This means that as such a system evolves
temporally, it relaxes to a steady state. The time deriva-
tive of the H-functiom vanishes. Thus, in equilitrium, £nf
nust be a linear comkination of summatiocnally invariant
physibal observablés. These are mass, linear momentum and
total energy. The hydrodynamic fparameters, mass density, p,
(this should not be confused with density matrix) streaming
velocity, u, and thermodynamic temperature are given Lty the

ensemble averages,

p = <I>M | (2.4-17)
¥=p"l<p> (2. 4=-18)
T = (M/pC_)<p?/2m+ K'E (2.4-19)

Here, M is molecular mass, p is the linear momentum function
operator, Kint is the internal kinetic energy function opera-
tor, aad Cv is the coastant volume heat capacity per mole-

cule. These ensemkle averages can be used to fix the coeffi-

cients of the linear combination of summational invariants
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appropriate to an(eq). This yields the usual Maxwellian

forn,

£ te) - (1/2MkT) (p=Mu) 2 -k *"E /T

n .
= 2.4~20
2 ( )

Here, Z is the molecﬁlar canonical ensemble partition func-
tion, k is Boltzmann's constant, and n is the number density
which is p/M. From the above definition of the macroscopic
parameters, it is clear that the singlet distribution
function-operator can be regarded as being normaiized to the
nunber density. This will be assumed hereafter in this wvork.
The definition of entropy in equilibrium statistical me-

chanics is,
s = -k<tng(®d) |gleqdy (2, 4-21)

This definition is readily extended for the dilute gas case

under consideration to,
s = -kH = -k<&nf|£> (2.4-22)

where £ is now not necessarily the equilibrium distribution
function-operator, Thus, the H-theorem can Lke interpreted as
a generalization of the Second Law of Thermodynamics (i,e.
entropy can never decrease) in that the irreversible relaxa-
tion of a molecular fluid to equilibrium is characterized by

entropy production.
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3. THE KINETIC THEORY
3.1. Linearization of the Kimetic Equation

In the preceding chapter, it was shown that the
Waldmann-Snider equation and the Boltzmann equaticn both
could be formally expressed by Eg. (2.3-1). Furthermore,
this formulation is easily generalized to mixtures by
assigning a species index (hereafter denoted by a Gre=zk
letter) to the basis vectors of Hj (3 = 1 or 2). Thus, one

can generalize Egq. (2.3-1) as follows,

a—a,-c-<1a|f> + <la|{{f,H“)}}> =
J/ar'faz2fa2'<1|28><1e2B8|0]1'a2'8><1'a|£><2'8|£> (3.1-1)
B

wvhere explicit use has been made of the fact that molecules
do not react during collisions (i.e. <102B8|01'a'2'B'> =

<1a2B81011'02'B8>6 The distribution function-

aa'SBB')‘
operator, £ (hereafter referred to simply as the "distribu-
tion") can be thought of as a vector in a "ccmposition space"

which has components of the form,
£, = Jaikie|£> (3.1-2)

It is clear from Eq. (3.1-2) that f can be thought of as a
vector in a subspace, Hg (of the full space, Hj), which is

appropriate to species, q.
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As stated in the Introduction, within the scope of this
work, transport processes are described by a linmear
phenomenology. Accordingly, a suitable linearized form of
Eq. (3.1-1) can be obtained via application of the standacd
Chapman-Enskog method. The method is based on the postulate
that the spatial and temporal dependence of the distribution
applicable to a dilute gas near equilibrium is implicitly
contained in the hydrodynamic fields (i.g. density, streanming
velocity, and temperature).

Heuristically, one can gain insight into the approach of
a dilute gas system to equilibrium by imagining that a volume
of gas is divided up into cells, each of which has a volume
that is negligible macroscopically but is of sufficient size
microscopically so as to contain a large number of molecules.
The cells can be imagined'to have cyclic boundary conditions
so that the system satisfies the usual mechanical
conservation relations. Clearly, the only time dependence of
the distribution in this hypothetical situation is due solely
to molecular collisions. These have the effect of bringing
the distribtuion rapidly (i.e., within just a few collision
times) to a Maxwellian form (cf. Eq. (2.4-21)).

The idealized situation just described is approximated
by a real system for which the hydrodynamic field gradieats
are small (i.e. the system is near equilibrium). 1In such a

system, any given molescule suffers a large number of
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collisions during a time interval sufficiently long so as to
allow it to drift an appreciable distance due to randonm
motion of the molecules. Thus, the time dependence of the
distribution is dominated by the gradient independent contri-
bution due to collisions. Accordingly, the time depandence
of the distribution due to the existence of a hydrodynamic
field gradient (i.e. a macroscopic flux) can be viewed as a
small perturbation on the collisional time dependence.

One carries through with the Chapman-Enskog method by
defining a dimensionless perturbation parameter, ¢, which
"parks" any time dependence that is due to a gradient of a

hydrodynamic field. Thus, one can write Eg. (3.1-3) as

follows,

]

e<la|g% + Veus + §EXt-§%|f> = —<1a|{{f,Hint}}> +

gfdi']dZ]dZ'<IIZB><1a26|Q|1'u2'B><1'a|f><2'B|f> (3.1-3)

Here, the streaming term (i.e. the tranmnslaticnal part cf
<1al{{f,H(1)}}>) is marked by ¢ since it describes the time
rate of change of the distribution due to macroscopic forces.

ext is defined as a weak extermnal

One should also note that X
force (e.g. gravitational) which has an appreciable effect
only on the hydrodynamic motion of the system (i.e. molecular
trajectories between ccllisions are not appreciakly affected

by ¥8¥t). The tern <taj{{£f,6int}}> contains the effect of

externally applied fields on internal molecular motion (in
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the present work, rotational). In contrast to the effect of
KQXt on translational motion, an applied field can signifi-
cantly alter internal motion during an intercollisional in-
terval. (This is the source of the Senftleben-Beenakker
effects.) Thus, {{f,Hint}} is conveniently grouped with the

collisional term (i.e. not "marked" by g¢) simnce its size

depends only on the strength of the applied field and can
become of the same order as the collisional tern.
To apply the Chapman-Enskog method, the following series

expansions of f and 3,3t are proposed,

(2)

£ = f(o) + sf(l) + ezf + e (3.1-4)

g?=;%+ e;’—t':-n- 52;%+ (3.1-5)
where, f(k) and ak/at denote contributions to f and 3/t
wvhich are of total power k in the macroscopic gradient opera-
tor (i.e. ktP order in the hydrodynamic field gradients). If
one substitutes Egs. (3.1-4) and (3.1-%) intc Eg. (3.1-3) and
equates terms of like power in ¢, one obtains a hierarchy of

equations of the fornm,

. k ' '
0 < e ™) gintyy 4 T @K gy (5000
k'=0

where,
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p(k) _ (0 for kx = 0)

k30 3k, (k=k'~1)
Z'a—tf +
k ‘=0 (3.1-7)
3 (k
vy £k 4 gext-g% £ (k) (for k # 0)
and,
ge®") £y o vy farefazfaz <r|2e>
aB
<28]9/1'02'8><1'a]e K )5carg £ K)> (3.1-8)

Equations (3.1-6), (3.1-7) and (3.1-8) are expressions of the
standard Enskog expansion applicable to quantum mechanical as
well as classical kinetic theory.

For the sake of completeness, it can be noted here that
the Chapman-Enskog method fails in the case of a highly
rarified gas (i.e., the Knudsen regime) in which molecules
travel a large distance Ltetween collisions.

For dilute gas systems in a linear phenomenological
regime, the perturbation in € needs only tc be carried to
first order. With this in nmnind, one can define a distcrtion
function-operator, ¢, (hereafter termed simply as the "dis-

tortion") as follows,
£ ¢ 5@y 4 0£0) (3.1-9)

This general symmetrized form is due to Snider (43). However,
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in the present work the simpler definition,

f(') = f(°)¢ = ¢f(°) (3.1-10)

is adopted. To justify this in anticipation of later devel-.
opments, it is sufficient to state here that for a dilute
gas, ¢ is a function of space~fixed compoments of the
translational and angular momenta. In contrast, f(o) is a
function of the total energy and thus commutes with ¢.
(Classically, of course, commnutation is not an issue.)

From Egs. (3.71-6) and (3.1-10) one obtains the following

zeroth and first order expressions,

0= —{{f(O),Hint}} + J(f(O),f(o)) (3.1-11)
D =

~{{£(0) g, gintyy 3(£(0,£000) & 5¢£0 £0)4) (3.1-12)

where for notational economy the superscript has been dropped
from D. Equation (3.1-12) can be written in a explicitly

linear form by means of the linear operators, F and T' , which

are defined by,

Flo> = |(1£(0y,ninty)y (3.1-13)
rle> = -a£@,£00)> - |5(£19,£04)>  @.1-19)

Thus, one obtains the expression,

|0> = -Fl¢> - I'l¢> (3.1-15)
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where F describes the effect of an applied 2xternal field and
I' describes the effect of collisions. These two operators
can be combined to form a generalized linear collision opera-

tor, é = -E-E, such that,
0> = Al¢> (3. 1-16)

The solution of Eq. (3.1-16) provides theoretical expressions

appropriate to linear transport coefficients.

3.2. The Zeroth Order Approximation to the Distribution

and the General Force-Flux Relations

In order to solve Eq. (3.1-16), a solution to Eg.
(3.1-11) must be found. To do this, one first notes that Eq.
(3.1-11) can be considered as an épproximation of the more

rigorous expression,
0= -{{f(O),Hint}} + JF(f(O) ,f(°)) (3.2-1)

where JF is defined in terms of a collisiqn kernel, OF' which

rigorously includes the effect of an applied field on the
collision dynamics (JF and QF replace J and ¢ in Egq.

(3.1-18) ). One can establish an H-theorem for OF using the

same line of argument as in Section 2.4. It follows that,
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where the o-species ccmponent of f(o)(gg Eq. (3.1-2) 1is,

2 int
£0) o~ (p~M ) "/2M kT § e-.Hq /kT (3.2-3)
o o [ZﬂMakT]-372 z:nt

t is the contribution to the partition function for

in
Here, Za
species o due to internal degrees of freedom. It is clear

that f(o) satisfies the equation,
0 = {{£{0),ginty, (3.2-4)

since it is an analytic function of internal degrees of
freedom exclusively through Hint. Hence, £(0) satisfies Eq.
(3.2-1).

It is clear that in the absence of an applied field,

-(p-M wZ/2m kT -KIPE/kT

(0) (0) e e ©
£ = f = n X e——— (3,2-5)
v} Oa o [27M kT]-372 Z1nt
o 0o
where,
0
0 = J(féo),fé ) (3.2-6)

int
] Oa
Z;nt, respectively. If it is valid to neglect the effect of

applied fields on the collision dynamics, then it follcws

Here, féo) and 2 denote the field free limits of 5(0) and

that féo) can be replaced by f(O) in Eq. (3.2-6). Thus, £(0)
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is the general sclutiocn of Eqg. (3.1-11).

It will be shown explicitly in the subsequent develop-
ment that the particular choice of Hlnt appropriate to this
int

work has the property that {{k ,Hlnt}} vanishes. Under

éO) is also a solution of Eg. (3.1-11)."

this condition, £
Noting this, f(o) and féo) will be treated hereafter in this

work as interchangeable and the five guantities, n , Uy o

uy,
U, and T (ux, uy, and u, are cartesian ccmponents of u) will
be taken as adjustable parameters depending on position and
time.

The local equilibrium approximaticn tc the distribution
is obtained if the following auxiliary conditions are

imposed,

= = ’ (O) -
n, = <1|£,> <1|£a > (3.2-7)

| = =1 = -1 (0)
u g(na%) <plf> g(naMa) <pl£,”’> (3.2-8)

sy <p?/om + Kint]fa> - (3.2-9)
g(nacéa))-1<p2/zna + Kint‘f£0)>'
where the right handlsides of these expressions by definition
éorrespond'to local values of the number density for sgecies
¢, the streaming velocity and the thermodynanmic température,
respectively. Here, Cé“) is the mclecular constant volunme

heat capacity for species . The auxiliary conditions imply

that the local values of the hydrodynamic fields are com-
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pletely determined by the zeroth Qrder approximation tc the
distribution and hence contain no contrihutions from the dis-
tortion.

Due to the collisional conservation of summational
invariants, the operator, A, which appears in Eq. {3.1-16) 1is
singular. This has beean previously noted for the full
collision kernel (i.e. © has zero eigenvectors corresponding
to the summational invariants). It is well-known that a
singular matrix equation camn be termed as "consistent" or
"inconsistent" which means, respectively, that sclutions
either do or do not exist. For a linear inhomogencous matrix
equation, coﬁsistency is guaranteed if all scluticns of the

corresponding homogeneous adjoint equation are orthogonal to

the inhomogeneity. Thus, if one comnsiders the expression,
o= 2" (3.2-10)
it follows that Eq. (3.1-16) is consistent if and only if,
<ply> = 0 (3.2-11)

where |y> represents an arbitrary solution vector of the ho-
mogeneous adjoint equation. Equation (3.2-10) 1is satisfied
if ¢y is identified as molecular mass, linear momentum, OTr
kinetic energy (or any linear combination of these quanti-
ties). If one evaluates Eg. (3.2-11) explicitly for each of

the summational invariants, one obtains the expressions,
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dopa

g T P2’ (3.2-12)
d.u
0—_ B . (ext )
gt = "p InkT + gp zsé xt) (3.2-13)

a,T

0", _DnkT o, -

g -, veu (3.2-14)

Here, Py is the maés density (pa = ndud) fcr species 0., n and
p are total number -and mass densities for the mixture

(m = g ng, P = %ps), and € is defined as the mclecular heat
capacity for the mixture (<, = B§BCéB)). The differential
operator, a%, is the zeroth ordér substantial derivative,

dy 3y ]
T = xe + Uy (3. 2-15)

These orthogonality conditions are immediately recognizable
as the Fuler or ideal hydrodynamic equations which means that
n,r 4, and T must evolve temporally according to
nondissipative hydrodynamics. This is, of course, consistent
vith their identification as macroscopic fields.

The peculiar éelocity of a molecule of component o is

defined by the expression,
- 3.2-16
C.L = p/M u ( )

This expression can be substituted directly into Eg. (3.1-7)

to obtain,
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Q

= 0.(0) . (8 3 (0)
by = 3efy  * ‘H*QQ).(sglc‘ Susse ) f,
S =L
X(ext:) .
+ 2 '%E £(0) (3.2-17)
o«  =r®

By using the identities 1 = f(o)(f(o))'l and dznf(O) =

(f(O))—ldf(O)

¢+ BEge (3.2-17) can be rewritten as focllows,

]
_ (0),°0 . (9 o e
—vﬂ - fa ' {-5—1:-." (E-"'Ea) (-ﬁ—-lc —7555 |r)
=0 —elL
(ext) (3.2-18)
2y 3 (0)
+ 1-\4_ .5-6 }-t-nfa
o ‘=l
where, from Eq. (3.2-5), £nf§°) equals,
(0) _ 3 _ pmpint _ 2
lnfa = £nna - 50T - &nZjg, Macq/ZkT
(3.2-19)
- Kint/kT + constants
9 .
Upon application of the differential operators, 5%, §%| and
1C
ﬁ% « to Eq. (3.2-19), one obtains the followiag resulf%,
oz
9 9 9 . MC 2d,u
0 (0) _ 0 _ 0, ,int a=a,  0—
seenfy | = gpimny - pEbndy, t xT v *
. (3.2-20)
Mc2 kift 3

o o o 3, 0
o Aot pr - P wetaT
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8, -(0)
a££nfa
2 int
) 3, int Mo KXTT 5 o (3.2-21)
£ - 9 s ) a _ 2 °
T T TPy * kTt RT - DEEtT
e _ _ M
scenfy = - e, (3.2-22)

Now, one notes that the molecular partition function for in-
ternal degrees of freedom is an explicit function of the tenm-
perature. Thus, use of the chain rule allcws the gradient of

int

0a to be written in terms of the temperature gradient,

2nZ

% tnZgat = 3% oy Lnggy” - (3.2-23)

and the gquantity, aznzégt/aw can be evaluated by the standard

formula of equilibrium statistical mechanics,

=int 29 int —
Ea = kT 5T ZnZOa (3.2-24)

Here, is the canonical ensemble average of the energy

-E-int
o

per molecule of o, which is due to internal degrees of
freedon.

One can substitute Egs. (3.2-20), (3.2-21), (3.2-22),

and (3.2-24) into Eg. (3.2-18) and use the Euler hydrodynamic
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equations to eliminate the zeroth order time derivatives,

thus oktaining,

D = Otk o e ¢ iou s (E-1)CaveRT +
- o C, — - kT=o=q " '— o -
(3.2-25)
n
5 Sada’
o
where Ea is defined as,
A T N (3.2-26)
o 2kT ~ KT 2 kT i

The vector, ga, is defined as the diffusion driving force for

component o. It has the explicit form,

n n p
= 2%+ G5 g (nkT)

x(exf)

4,
(2.2-27)

The three terms which comprise gd can be given the following
physical interpretations. The first term is the gradient of
the mole fraction and corresponds to the driving force of or-
dinary diffusion as defined by Fick's First Law. The second
term describes a situation in which the hydrostatic pressure
is not uniform. 1In such a case, lighter moleculeé tend to
migrate preferentially toward regions cf lcw pressure. The
third term describes a situation in which externll forces

acting on molecules of different species are unequal. This
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implies that if the exte:nal forces are constant, the compo-
nents tend to become stratified.

The.inhomogenity defined by Eq. (3.1-7) has keen
expressed explicity by Eg. (3.2-25) in terms of the
thermodynanmic forces, v-u, vu, ZﬁnT and ga. The‘components
of vu and v&nT are linearly independent; however, the
diffusion forces form a linearly dependent set of vectcrs

since,

§9a =0 (3.2-28)

This expression follows directly from the definitions cf
total number and mass densities as sums of number and mass
densities of each component.

It is desirable to remove the linear dependence inherent
in Eg. (3.2-25) due to the diffusion forces. This is accon-

plished by using Eq. (3.2-28) to formally add zero to ga,

p
= -—.a -
4, E(Gas 5 )QB (3.2-29)

Here, the factor pa/p has been included explicitly, because
it combines with factors appearing in Egq. (3.2-25) in a par-
ticularly desirable way upon substitution of Eq. (3.2-29)
into Eq. (3.2-~25). This will be discussed in more d=tail

later. If one carries out this substitution, ome obtains,
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) f(O){(EWZ ?Eﬁf;|)v-u + 2(W W -Y;U)°Vh +
‘a T *a 3%a C, - = Zoma 3 = T—

v 5 (3.2-30)
% . Pe.=8
(E,-1) [2kT/M ] %4;7LnT + nmatzkw/na]”v_zag (8,45 5—-)-0-;1

where the dimensionless peculiar velocity is defined by the

expression,
W = [M /2k‘1‘];5C (3.2-31)
- (¢ =a )

and U denotes the identity tensor. The velocity gradient,

v u, has been written explicitly in terms of its irreducible
components. (The symbol, é, is adopted here as a uniform no-
tation for the symmetric traceless component of a general
second rank tensor, G.)

It should be noted before proceeding that the method in
which the linear dependence of the diffusicn forces was
eliminated will lead naturally to linear force-flux relations
which explicitly exhibit the Onsager-Casimir reciprocity re-
lations. Physically, this is a particularly satisfying
result. However, this method of removing the linear depen-
dence is not unique, but is rather, one of an infinite number
of methods. In particular, another useful way of removing

the linear dependence is embodied in the expression,

(3.2-32)
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If Eq. (3.2-32) is substituted into Eq. (3.2-25) (instead of
Eq. (3.2-29)), one obtains the force~flux relations which
correspond to the usual formulation of Fick's First Law (but
do not explicitly exhibit the Onsager-Casimir relatioms).

If one substitutes Eg. (3.2-30) into Eq. (3.1-16) and
takes note that the thermodynamic forces are limnearly inde-
pendent and that é is a linear operator, it follows that the

distortion can be cast into the form,

o . d
¢ = DVeu + B :%u + [2kTI¥A«wenT - nJ (B).22  (3.2-33)
8 P8
Here, the symbols A, é, D, and ;(B) specify contributions to
the distortion due to the presence of specific thermodynamic
forces. If one substitutes Eq. (3.2-33) into Eg. (3.1-16),

one obtains,

|oP>

122> = 213> (3.2-35)

A|D> (3.2-34)

1™ = Al (3.2-36)
(8) |
lg‘ > = 4|5(8’> (3.2-37)
where the inhomogeneities are defined,
E k
D _ .(0) 2 _n a” -
Da fa ( Pt 1) (3.2-38)

v
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B _ ,¢(0) 1,2 )
B2 = 2¢°) (w W -3wln) (3.2-39)
A_ £(0) g _yyME -
0y = £.°) (E,-1)M W (3.2-40)
(8) P
g0 o £(0) %y (& - -
D = £, [2M kT]1 "W (5 Sup) (3.2-41)

Thus, the evaluation of the distortion and hence the
transport coefficients, is a well-posed problem which can be
carried out by the construction of Q in an appropriate basis
followed by the solution of the resulfing matrix equation
(i.e. Egs. (3.2-34) through (3.2-37)). The mechanics of this
procedure are discussed in detail in Sections 3.4 and 3.5.

In a dilute gas, the flux vector of scme physical
guantity, Xy for species a, is given by the ensemble aver-

age, <xaga>, which is to say,

= 3.2-42
<x C > <f|xaga> ( )

If the distribution is expanded via the Chapman-Enskog
method, then any flux vector can be also written in terms of

the expansion for which a general term of order k has the

fornm,

(k) _ <¢lk) 3.9-
<x.C.> <f Ixag¢> (3.2-43)

The description of a linear phenomenolcgy requires a knowl-



92

edge of <xa§a> only through first order. Thus,
nondissipative (k = 0) and dissipative (k = 1) contributions

can be wvritten as follows,

(0) . <11£(O) ' 3.2-44
<x C > . <zj£*x c > ( )
\ .
<x_C > w <p)eO% c > (3. 2-45)

where I and ¢ represent the identity and the distortion, re-
spectively. Since f(o) is of a Maxwellian form (cf. Eq.
(3.2-51)), any nondissipative flux vector, <xaca>(°),

vanishes unless X, is an odd functiom of C (e.g. the

s ) . (0) :
nond1551pat1ve partial pressure tensor, <Hq§a§a> = naxTU;

nondissipative mass and heat flux vectors vanish).

Linear force-flux relations can be established by sub-

X . 1 2, .int .
stitution of X, equal to Maga' Ha and 7Haca+xa (i.e. the

summational invariants) into Eq. (3.2-45) to obtain expres-

sions for the dissipative pressure tensor, 7, component

mass flux vector, ia' and heat flux vector, q- One obtains,

I= émagaga>(” = kT<¢ |§B+;-vpy> (3.2-46)
I, = <Ma|9<;> = -<¢|2r’(°‘)> (3.2=47)

Z<( 3™ .C +x"“t)c > = [2k 'r3]"<¢|v“> (3.2-48)

where use has been made of the explicit form of the

1nhomogene1t1es (i.€-¢ Eq. (3.2-38) through (3.2-41)) and the
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auxiliary conditions (i.e., Eq. (3.2-7), (3.2-8), énd
(3.2-9)). One should note that there is the same number of
force-flux pairs and hydrodynamic fields. Derivation of the
force-flux relations is completed by substitution of Egs.

(3.2-33) through (3.2-37) into the preceding expressions (d5).

= -2k B vtnre<aln B> - kv "u:<BlalE> -

(3. 2-49)
KTv-u<D|A|B> + nKTz%ﬂ- <z (9 B>
= aPo — =
T = —[2k3T3]%v£nT-<§|4|D> - kTV°g:<§|§|D> -
- = - = (3.2-50)
kTv-u<D|A D> + nkTZ'“ 7 ¥4 |p>
o (!
3 o
dg = [ZkT]?ZLRT’<A|A|£(B)> + vu:<Blale®)> + 5 5usn

- afa

g = ~2k*7?venT-<a|A 2> - [2k3T31?Z°3=<ﬁlgl§> |
= = (3.2-52)

tﬂém

123 5w [ 2> + [2x37%) ) £‘¢)|Q|§?
a

Here, the tensor, 1, has been decomposed into a symmetric

traceless component, i, and a trace, ﬂ; where 7 = £=+ %EU

(for dilute géses T has no antisynmetrié‘conponent).
Equations (3.2-49) through (3.2-52) are the 1linear

phenomenological relationships, as given generally in Eq.
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(1-1), which are appropriate for dilute gases. If the matrix
elements of  are transposed so that the Egs. (3.2-49)
through (3.2-%52) are written as conventional matrix equa-
tions, one can identify the phenomendlogical coefficients =x-

plicitly as matrix eiements of 4+,

- + -
1.:.Lj = <¢i|1=\ |¢j> (3.2-53)

where ¢ is the part of the distortion characteristic of the

force-flux pair X,-Jd,.
i i

3.3. Diffusion, Thermal Conduction, Soret and Dufour Effects

in a Binary Mixture of Atoms and Diatcms

The formalism developed in Chapter 2 and the first two
sections of this chapter is completely general to mixtures of
any number of components with arbitrary internal degrees of
freedom and in the presence of an applied field. Here, and
for the remainder of this work, consideration is limited to a
binary mixture of a monatomic species, o, and a diatomic spe-
cies (more generally, linear), B, in the presence of a mag-
netic field. The diatom will be treated kinematically as a
rigid rotor.

A monatom-diatom-magnetic field system exhibits
invariance with respect to coordinate ianversion. Thus, the

collision operator, A, commutes with parity, P, implying that

~
~
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A cannot couple distortions which have different parity ei-

genvalues. Immediately, from Egs. (3.2-51) and (3.2-52) one

obtains,
v (5 - p2ecg O |4z M>
3, = [2kT] venr-<alplz' V> - ng <g''alz -

a (3.3-1)
n=B.<z B a1 >
pB - ~

a
¢ = ~2k®r?venr-<ala|n> + (2630702 ) p)a> 4
- P (3.3-2)

233y e <z |p1a>
Pg

The phenomenological coefficients appear here as second rank
tensors. One can write Egs. (3.3-1) and (3.3-2)

conventionally in terms of the thermal conductivity,

1>
~

~thermal diffusion (Soret) coefficient, g$' diffusive thermal

(Dufour) coefficient, £$, and diffusion coefficient, gyy" as

follows, .
1 T nkT nkT -
= - VY - == Q. - — d -
Iy = 7 By IT P, “Ya 9y = s “YB =8 (3.3-3)
_ 1 nkT ,T nkT T
3 - OVT - . — L4 - -
g = - by Safa = G Kpodg (3-3-4)
where As 2$' £$, and QYY' have the explicit definitiou,
= 2 + 3.3=5
2 = 2(xm) “<a 472> (3.3-9)
T
P‘Y = -[2k'r];’<_;_(7) |4*|4_\_> (3.3-6)
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By = E_T_<C(Y)M‘r|;(v )s (3.3-8)

Digressing momentarily, it is interestinqg to note that the
usval binary diffusion coefficient, gyy" is related tc QYY'

as follows,

1 -
'Q_'YY' = -r_lkT(B;.ﬂYY' p'Y 'QYY) (3.3-9)

Matzen has given a detailed discussion of the general rela-
tionship between 2§Y' and QYY' in a multiccmponent mixture
in his dissertation (45).

Explicit relationships (i.e. the Onsager-Casimir rela-
tions (19,20,21)) can be found between some of the previously
mentioned phenomenclogical coefficients as a consequence of
microscopic revers;bility. If cne notes first that § = -§+
due to its definition as a Poisson bracket or an operator

commutator, and if §int js taken as proporticnal to the

field, then the identity,

TA@® =00GDT (3.3-10)

is easily established via Egs. (2.3-5), (3.1-8), and
(3.1-16) . Here, T is the time reversal operator, F is the
applied field, and Tt is the time reversal eigenvalue of E.

If one notes that the thermal and diffusive distortions have
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the same time reversal eigenvalue, Egq. (3.3-10) immediately
yields,
T T :
(3.3-117)
Dy =&
Byy" BY.Y (3.3-12)
where H denotes an aprlied magnetic field.

In addition to the Onsager-Casimir relations, further
relationships between the diffusion and thermal diffusion co-
efficients can be found as a consequence of the linear depen-
dence of the diffusion forces. One finds frcm Egqs. (3.2-37)

and (3.2-41) that ZQ(Y) vanishes in general (i.e. g(a) =

Y
7i(6) in the present case). Thus, it follcws that,

T T 3.3-13)
2y = -DB (
and,
840 = ~8qp = &g = “8pa C(3.3-18)

Again digressing, it is interesting to note that Egs.

(3.3-13) and (3.3-9) yield the result,

= - p -
Ryg nkT(papB)gas (3.3-15)

D ., = ish.
vhere Dyg gBa and gau and 288 vanis

In conclusion, it is clear from the preceding develop-

ment that the phenomenoclogical coefficients describing ordi-
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nary diffusion, the Soret effect, the Cufour effect and. heat
conduction are all embodied in the three seccnd rank tensor

quantities, A, 28' and ga In the absence of an applied

B

field, the isotropy of space requires that )}, D and § are

B’ =aB
all proportional to the isotropic second rank temsor, U.
However, the application of a field destroys three dimension-
al spatial isotropy although one still observes two dimen-

sional isotropy in a plane perpendicular to the direction of

the field, K (K = H/|H|). If T is adopted as a general nota-

tion for ), gT

8 or ﬁa , in the presence of a field it takes

8
the fornm,

T = Tl(y-iﬁ) + T,kk + T __(kxy) (3.3-16)

tr
describe transport which is, respectively, perpendicular and

where Ti, T", and T are scalars. Specifically, TL and T"

parallel to the £ield direction. Thke "transverse"

phenomenological coefficient, T__, describes transport which

tr
is both perpendicular to the field directicn and to the
thermodynamic stress (field gradient) giving rise to the

flux.
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3.4. Formal Inversion of the Generalized Linear

Collision Operator

It follows frcm Fgs. (3.3-5) through (3.3-8) that the
phenomenological coefficient, T (i.e. A, gg, or gaB) can be

written formally as,

T = t
I = C<FlA"|e> (3.4-1)

wvhere CT is a numerical coefficient and F and G are distor-

tions (i.e. in tke present case, A, C(a)’ ar ;(B)), If use

is made of Egs. (3.2-34) through (3.2-37) cne obtains,
= F -
T =c <0 |e> (3.4-2)

where QF is the inhomogeneity conjugate to the distortion, F
(i.2., 2? is QA, QF(Q), or QF(B)). As stated in Secticn 3.2,
the phenomenological coefficient (i.e., T) can be evaluated
explicitly by construction of the appropriate distortion

(i.e., G). However, because § is a singular operator the ex-

~

pression (i.e. Eg..(3.1-16)),

|2§> = Ql > (3.4-3)

cannot be inverted directly. As stated previously, this
singularity arises from mechanical conservation principles
and is manifested in the fact that the sumrmational iavariants
are zero eigenvectors of é. -To remedy this, ome can define

the nonsingular operator, |, as the sum, p+A, wkere,
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0 0
a= 1 ai e (O s, v 1ag) Dlpyey" >R, e,
= \Y

(v) (0) (0) -
+ a |a £ ><h £ | (3.4-4)
g 3 g AVARV) TR

Here, hB = pg/sz + Ként - 3kTrs2 - Eént and ha = pg/zuu -
3kT/2, and afv), gév), and aév) are arbitrary scalar and
tensor constants which will be specified later, and the sums
are taken over o and B. Thus, the nonsingularity of E is
guaranteed by the auxiliary conditions (i.e., Egs. (3.2-7),
(3.2-8), and (3.2-9)) which require that the only nonzero ei-
genvalues of é must be linearly independent combinations of
the summational invariants. Thus, an appropriate number of
ﬁdditional linearly independent conditions (cne for each
summational invariant) are provided by.the auxiliary condi-
tions and are coabin=d with the singular operator, Q, to con-
struct the nonsingular operator, g. Tt follows explicitly

from the auxiliary conditions (i.e., g(1) gives no contribu-

tion to hydrodynamic fields) and Egq. (3.1-16) that

o> = £|¢> (3.4-5)
or.in .particular,
1% = Ll&> (3.4-6)

Thus, T can be written,
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T = c<0¥ |7 2% (3.4-7)

where L™! is vell-defined as the inverse of L.
1

A formal expressiom for L~ ' can be obtained if L is
written as an cperator sum(46),
L=1L,+W (3.4-8)
where LO is defined as the "spherical" contribution to L and

the remainder, W, is defined as the "nonspherical" coatribu-
tion. (The motivation behind these designations will becone
clear in later development.) It is assumed that L0 is

nonsingular and thus one obtains,

_ - - -
1=lolo=1Lp't - Ly'ur (3.4-9)

Repetitive substitution of Eq. (3.4-9) into itself yields,

R RTISL G-4-10)
j=0
Equation (3.4-10) is useful omnly if é_l is easilyvconstructed
and if Q can be considered as a small perturbation (in the
"nonsphericity") on éo (i.e. the s=ries converges rapidly).
It will become evident in later develorment that both cf
these criteria are met for cases of interest in this wark.
If one defines a dimensionless ordering parameter, np,

(ultimately to be set equal to unity) which marks the diatonm
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density, nB, then can be cleanly separated into a sum of

5
L0, ¢

operators, 1), and 5(2), which involve, respectively,

only atom-atom, atom-diatom, and diatom-diatcm collisions,

Likewise, the inhomogeneity, DG, and the distortion, G, can
be written as power series in y (or equivalently in the

diatom density),

DG - 29(0) + ng?(‘) +.n229(2) + ... (3.4-12)

0) (1) 2,(2)

+ ... (3.4-13)

g=g¢% +ng'" +n

If one substitutes Egs. (3.4~-12) and (3.4-13) into Eq.
(3.4-11) and equates coefficients of like power in p, one

obtains a hierarchy of eguatioms,

G(3) (0) (3) (5-1)

50N | [ea] O[S, S,

G(3j) (3) (3-1)

Py | 0] 9 (S Sg
o |o go(‘j“”

+ ——-(2) (4=2) (3.4=14)

. J-
O |Lgg’| |Ss

where Eq. (3.4-14) has been written explicitly in terms of
"composition space" comgonents. This expression can be

rearranged to yield,
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-
(3) (1) m_l
_G.a - L'aa éa
1~ (3=1 (1)
ﬁgB %Ba 0
(3. 4=15)

where one notes that g(k), QGék), and QGék+1) all vanish if k
is less than zero. Thus, G has been constructed as a series
of successive approximatiohs of increasing power in the
diatom density. Before proceeding, one should note that the
operator, g, defined as |
L(O)
Tao

()
0 ,”éss

(3.4~106)

ar—|
il

can be inverted formally to obtain the inverse operatcr, Z—I,

(0) -1
N R 7
= (3.4~17)
: 1o (1), -1
° ln‘éas )

by means of the same "nonsphericity" perturbation technique

(cf. Egs. (3.4-8) through (3.4-10)) outlined previously
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(where T,. and Wo are defined in complete analogy to T and ).
~ £ = =
One can write I as a series in p by substitution of Egs.

(3.4-12) and (3.4-13) into Eg. (3.4-2),

T = § nd(j) = CT § ; nj<2?(k)'§(j-k)> (3. 4-18)
j=0 3=0 k=0

The utility of this kind of expansion can be appreciated in

the analysis of the effect of interactions between unlike

molecules (i.e., atcms and diatoms). Specifically, 2(1) in-

volves the effect of atom-diatom interactions but does not

involve diatom-diatcm interactions and can be written in

terms of a limiting slope,

(1) _ 9 = Pim (3 S 3.4-19
o aing Pemng E = 2N Opagd) ( !
8 Ina g

Here, XB is the diatcm mole fraction, nB/n.
To conclude this section, E¢g. (3.4-18) will be applied
specifically to the thermal conductivity, A, to illustrate

its utility. Thus, one obtains,

-] " R "
3= ) ndy3 (3. 4-20)
j==0 .
Now, using simple collision number arguments, it is possibile
to write an empirical expression for the thermal conductivity

of an atom-diatom mixture as follows,
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= x2 . x2 -
2= XA o+ X Xdoo + Xgdag (3.4-21)

vhere Xa is the atom mole fractiom. The tensor guantities,
Aaa and ABB' are pure component thermal conductivities for
the o and B species, respectively, and thus involve only in-
teractions between like molecules. 1In contrast,.imB involves
only interactions between unlike mclecules and can be viewed
physically as the thermal conductivity of an equimolar mix-
ture of o and B species for which the g-g and g-g interac-
tions have been hypothetically "turned off" (i.e., only ¢-B
collisions occur). If one notes the definition of the mole
fractions, Xa and XB' in terms of the densities, na and nB,
and assumes that the atomic species is the wajor ccmpcnent,
then one can use the geometric series to write Egq. (3.4=-21)
in the forn,

2nB

2= A5, (2 -2 )t e (3.4-22)
o

Here, the marking parameter is inserted explicitly. Compari-

son of this expressiocn to Eq. (3.4-20) allows the identifica-

tions,
2o = 20 (3.4-23)
y =y 1,00 (3.4-24)
=ap Fﬁ; Z
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Thus, the effect of unlike collisions can k2 directly iaves-

tigated by means of the diatom demsity expansion.

3.5. Expansion of the Thermal and Diffusive Distortioas
Using Irreducible Tensors, Scnine and

Wang Chang-Uhlenbeck Polyncmials

One beygins this discussion by investigating the concrete
form for the iZIHilbert-Schmidt inner product appropriate to
an atom~diatom mixture. If X and Y denote arbitrary composi-
tion vectors, the ccmponents of which are real functioms of
the free-flight invariants exclusively, then classically

<X|{Y¥> can be defined (3€),
] (- -] o0
= ——fde + [aW X Y .5~
<x|y> EFfdefdﬂsédalédﬂzstB fd_a oY (3.5-1)

where Ea and W_ are dimensionless peculiar velocities as

B
defined by Eg. (3.2-31) and € is the unit vector parallel to

the diatomic internuclear axis. The variables, Q] and 92 are

defined as,
Q. =2 /[21 k'r]’s (3.5-2)
1 1 B :
Q. = £./1[21 k'r];5 (3.5-3)
2 2 B

where zl and £2 are components of the diatomic rotational
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angular momentum appropriate to the two thermally active
rotational degrees of freedom and IB is the diatomic moment

of inertia. Because XB + Y, are independent of &, one can

B
make a change of integration variable to obtain,

x|y = ¢ 21'“ dofaw jd“za XY, + [dW X ¥ (3.5-4)
B ~B[8g| "8 —eee

where ¢ is a phase angle describing the position of the
diatom internuclear axis relative to a space-fixed coordinate
system. The reduced rotational aangular momentum, QB, is

defined in analogy to @, and @

1 27
¥
= 2I kT 3.5-5
2, = £,/[21 k] (3.5-5)
where éB is the space-fixed diatom rotaticnal angular momen-

tum. Since ¢ is not a free-flight invariant, Eq. (3.5-4)

gives,

ag
=] —8 -
x|Y> = ffd?—sfﬁ_?a Xg¥g + [aw anq (3.5-6)

Quantally, <X|Y> is defined (?B and ?B ccmmute),

e © (
X , s S .
= 3.5-7
<[> = ]dgsjzo m}_qulxsyeljm + faw X,y ( )

where Oy equals 52/21 kT and |jm> is an eigenfunction of the

B

reduced rotational angular momentum magnitude and z ccmponent

operators QB and QzB'
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Digressing briefly one notes that an analytic function,
F, of a three dimensional vector, X, can be written as the

following series,

F(x) = cf (0 (x) g [x] (n) (3.5-8)
n=0

Here, F(n)(x) is an n-rank tensor function of the magnitude
of x and [g](n) is by definition, the n-rank irreducible com-
ponent of the n-ad, (g)n. The symtol, g, denctes n succes-
sive scalar contractions taken between pairs of indices
starting with the last index (i.e. on the right) of s (0) (4
and the first index (i.e. on the left) of [gl(ny and
proceeding in order to the first index of F(n)(x) and the
last index of [;](n). This is the so-called "adjacent"
tensor contraction convenﬁion and will be uniformly adopted
throughout this work unless otherwise stated.

The irreducible temnsor, [5](n), is symmetric and
traceless on all pairs of indices. It is easily shown that
the [;](n) are mutually orthogonal under integration over the
angles of x. Also, the expansion given in Eq. (3.5-8)
remains valid in the case that x is a vector operator. 1In
this case, the resulting irre@ucible tensor operators now
form a mutually orthkogonal set under the trace operation. 2

brief discussion of the properties and form of the irreduc-

ible tensors appears in Appendix A.
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The normalized Sonine polynomials, Sg(x), satisfy the

following orthogonality condition,

T ag(b) (b') -x _ 3.5-9
gdx x%s (x)‘Sa ,(x)ﬁe =8 ( )
and have the éxplicit fornm,
a : =0 (b-3)!31IT (a+3j+1)

Similarly, the normalized Waag Chang-Uhlenbeck polynomials,

Séb)(ﬁé), satisfy a corresponding orthogonality condition,

) L f _Qz :
= ;o 152a Beo(b) /52, o(b") 52, {;
< = -
T jgo mj-j jm|QB e sa (QB)Sa (QB) |Jm> abb' (3.5-11)

The coefficients of the Wang Chang-Uhlenbeck polynomials are
easily determined using an appropriate orthogonalizaticn
scheme (e,g. Schmidt orthogonalization). The zeroth and

first order polyncrials are,

(0) 52 - 1 % 3.5-12
(a2 = ela) ] {e(a+1) ~2
S (7)) = -5 .
: ° L‘a"‘Z)e(a)-(e(aﬂ))zJ e(a) g| (3-5-13)

where,
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er ® [ 2 -QZ ’

ela) = & ] f <jm|a%2 e Bljm> (3-5-14)
8

. jBO m=-- 4

It is easily shown that the correspondence limit of ¢(a) is
I'(at+1) from which it follows that the Sonine polynomials are
the correspondence limit of the Wang Chang-Uhlenbeck
Folyncmials.

The Sonine ands/or Wang Chang-Uhlenbeck polynomials can
be combined with irreducible tensors to construct a general
set of basis function-operators which are given by the fol-

lowing expressions,

vP = Prpsa/21® sl w1 P lsets)

' +q+1
v (Pas8) = 2PYEY sz riara/2n® 88 g

2)g(+) (52 (P)rg ¢ ()
(W5)Sg™" (%) [Wg1 "PlIR,)

Here the classical foram of wépqst) has been given. For com-

parison, the quantal form can le written,

% (S)
] sp+lﬁ

wépqst) - [zp+q+1'ngr(p+3/2’T(q+3/2)N
(3.5-17)

gt
2, 0(t) 22 (p) (q)
(WB)Sq (ﬁB)IWB] [QB]

where the constant N & is a quantal correction for the

= 1/¢(0)). Clearly, Eq.

normalization constant (e.d. NOO
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(3.5-16) is the correspondence limit of Eq. (3.5-17).
The preceding kasis function-operators by definition,

satisfy the following orthogonality relations,

2
-W
3.5-18)
(ps)y(PS)e % _  (p) (
fdﬂawa Ya g3/2 & 6pPssS
and
2 A2
-W, -
Ifdw IQEB w(pqst)? (PQST) e BB
ZHgin ¥s B 577
{3.5-19)
(p,q)
= A
GPPGQQGSSGtT
or
2
9 © , __52 -WB
r . (pgst), (PQST) Bl .. e
T aw, 1 §<Jm|‘i’ v e "lim> =
T Bj=o m=_j' B B ,"3/2
(p,q) (3.5-20)
4 6pPGqQasSGtT

Here, A(p) is defined as a three-dimensional isotropic tenmsor
of rank 2p which has the tensor symmetry of [;](p) on its
first and last p indices. If one notes that the tensor,[;](p)
forms a basis for an irreducible representation of the
three-dimensional rotation group, O+(3), it follows that the
tensor, A(P), is the identity element in this representation
(i.e. A(p)g[éj(p) = [ﬁj(p)). Using this definition of A(p),
the tensor, A(p,q)’ is defined as an isotropic tensor of rank

2(ptq) wvwhich has the tensor symmetry of the direct product
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tensor, [gl(q)[il(p’, on its first p+§ indices and of
'[X](p)[il(q) on its last p+q indices. It can be constructea
from A(p) and A(q) bty "sandwiching" A(P) between the first
and last sets of q indices of A{®)_ Accordingly, A(P/9) is

the identity element of this direct prqduct represgntation,

(1-8-

2D o 1x1 Dyt ® = 11 (@ g1 Py The prop-
erties and form of these isotropic tensors are discussed in

Appendix B.

A distortion, G, can be written in terms of the basis

function-operators as fcllows(47,48),

C_ 5 (ps) (ps) -
G = v <W &> (3.5-21)
S = I szo 2 '™ |
T % t (pgst) E -
G, = ) y (Pas ;quy Past) (@  (3.5-22)

=8 p=0 q=0 s=0 t=0 B

where {  is defined as féo)/n . By convention, when a basis
function-operator, Wépqst)’ appears to tle right 6f a con-
traction or within a bra it will undergo a bulk transposition
of temsor indices (i.e. [EB](p)[gB](q) > [QB](q)[EB](p))'
Equations (3.5-21) and (3.5-22) lead immediately to the

matrix equation,

(‘P\()pqs.t) |EG> =
(3.5-23)
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(pgst) (PQST) (POST)
<y LY > <y >
Rggr v L1y pfo ¥y 4,8
H

By convention, the angular momentum indices gq,t or Q,T are
ignored if v or u, respectively, is o. Clearly, Eq. (3.5-23)
is a concrete representation of the abstract expressicn Eq.
(3.4~-6). Thus, the sclution of the linearized
Boltzmann/Waldmann-Snider equation is now embodied in the
evaluation of the matrix elements of the orerator, &, and
construction of its inverse in an irreducikle tensor Sonine
or Wang Chang-Uhlenbeck polynomial representation.

The thermal and diffusive inhomogeneities given in Egs.
(3.2-40) and (3.2-41) can be written explicitly in terms of

the basis function-operators as follows,

2: = [E%;]kféO)wéil) (3. 5-24)

22 - féO)([Kﬁglk?élojo) N [55%]% wé1001)) (3.5-25)
ot féo’[MakT]*(%} - 5, ¥ @aas-26)
5" = £0) [Mskm%(f} - 8, )¥(1000) s

where ¢* = (€(2)'(€(1))2/€(0)). It follows from these ex-
pressions) Egs. (3.3-5) through (3.3-8) and Eq. (3.1-16) that
the phenomenological coefficients can be writtem explicitly

in terms of the coefficients of the expansion of the distcr-
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tion (i.e. Egs. (3.5-22) and (3.5-23)). One obtains,

2 = 2(kT) {n [ 1 5(") + ngl - 155(1010) .

ng 2M ]%3(1001)} (3.5-28)

Dy = l2mg 1%n kTa“°°°) (3.5-29)
Mg 5, (a)(1000)

QGB = _[ﬁ] nB cB (3.5-30)

where, géps) is <Wéps)lﬂa§?, gqut is'<WépqSt)|58§>, and
gé“)(pqSt)‘is <Wépq5t)lﬁsg(a)>. Also, use has been made of

the auxiliary condition,

= 3 (10) ME <y (1000 -
0 = nM2 <¥ T [§ > + ngMi <¥g )|6 0> (3.5-31)

One can conclude from Egs. (3.5-28), (3.£-29) and (3.5-30)
that the complete construction of the distortion is‘not nec-
essary since the phencmenological coefficients have been
written explicitly in terms of just a few cof its components.
Thus, the full basis camn be truncated to a manageable finite
size with little error. To be specific, in this work the

truncated basis consists of the seven function-operators,

w(lO)' W(ll)' y (1000) w(1010), W(IOOI), y(1100) | apq w(1200)'
. 8 8 B B B

The first five explicitly appear in the thermal and

diffusive inkomoqeneities and are of obvious importance. The

remaining two are anisotropic in the rotational angular mo-

mentum and are included in order for the Senftleben-Beenakker
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effects to be treated.
The task of constructing matrix elements of L"] now

remains. To do this, first an explicit form appropriate to

110t pust be given. It obkviously vanishes for the atomic

species. For the diatcmic species in an applied magnetic

field, H, one can write,

int

He

= LT 3.5
Vg [2I,kT1%0, B (3.5-32)

where YB is the gyromagnetic ratio of a g molecule. This

form is applicable in both quantum and classical mechanics
int
B B
ables as is appropriate. Considering the quantal case, from

with H and &, being linear operators or dynamical vari-
Eq. (3.1-13) it is clear that a matrix element of F takes the

fornm,

(pgst) {(PQST)
<Y |§|wu > =
Y8 . (pgst) |, (0) ,, (PQST) , .
<¥s [£g " [¥g . Lo HI>S 06, 8 (3.5-33)

Here, £B is the space-fixed rotational angular momentum oper-
ator. Clearly, féo) ccmmutes with £B'ﬂ and the basis
function-operators and thus can be taken outside of the
commutator. Angular mcmentum operators obey the well~-known

conmutation relation,
,E ,E .H = -jne xH 3.5"3“
[ B" B "] ' ‘_B ot ( )

If one combines this expression with the following commutator
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identity,
[AB,C) = A[B,E) + [&,C)B (3.5-35)
where 3, B, ana C are general quantum mechanical ogerators,
Qne obtains the result, '

n . .
[(£0)% 2g H] = iR J (£)VxH(£n) ™™ = -in(e

)Py H (3.5-36)
j=0 =

B 8

The symbol X is defined in relaticn to the sum as by

Cooper (46) . That is to say that xn denotes a sum of n terms

obtained by crossing a vector (in this case H) into each of
n

B) )'

From the above result and its definition as the symmetric

the n right hand indices of a temsor (in this case (¢

traceless part of the polyad, (&B)n, one can easily establish

that [£ ](n) obeys a similar expression,

B

[[&8](“) Lo H] = -iﬁ'[g_B]("’xng - (3.5-37)

Thus, a matrix element of has the explicit form,

(pgst) (PQST) _ _ (pgst) | (0) , (PQST)
<vaq '5“'1: > = ~yp<¥y |£g Y > oH8 g8, g
- - (p,q) )
= -ngYgh xqﬁépPanasSGthvﬁéuB (3.5-38)

In the correspondence limit, Eq. (3.5-37) becones,

(121 ™ 2 m) = -1250 ™ B (3.5-39)

where the braces denote the Poisson bracket. This is identi-
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cal to the result ottained by Cooper(46). In conclusion, one

t

should note that for BT ., as defined by Eq. (3.5-32), the

quantity {{Klnt, Hlnt}} vanishes as was stated at the tegin-

ning of the chapter.
Next, one should note that the operatcr, A, (defined in
Eq. (3.4-4)) can be written exclusively in terms of direct

products of the basis function-operators, W(OO), W( 0),
o o

w(iO)' ll,(0000)' W(IOOO)' w(OOlO)' and w(OOOl)' where
o B B B 8

_ 3, (1000) (0000) .
p, = [M kT]*¥H + MY u (3-3-40)
_ 2kT , (0010) %, . (0001) M, % (1000)
h = -2kT * Vv .
v AJ7 Wv [e™] kT‘}'v + [kT] Wv u
M u2
+ Y L (0000) (3.5-41)
2KT 'V

Thus, A has nonzero matrix elements only in the subspace

spanned by the above seven basis functions of which only two,

(10) (1000)
Wu and WB '
used in the present work. In principle, the arbitrary scalar

are in common with the truncated basis

and tensor constants, af“), gév), and aéV) must be
nonvanishing if the nonsingularity of é is to be guaranteed.
However, in practice, one needs % to be nonsingulér only in
the sukspace spanned by the truncated basis. Thus, under
this less stringent condition, it is convenient to set all of
the constants equal to zero except for gé“). Now, so that é
3

will have the same dimension as [ (i.e. cm sec™1) gé“) is

explicitly defined as
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a :
ai® = B 73 (3.5-42)

. naMukTv
where V is the macroscopic volume of the system. Thus, in

the truncated basis, A has the explicit fornm,

A = _LEJ75{ £(0)y (10)5 . (0),(10)
= nav] I a a ><fa ‘Pa l + (3.5-43)

[;_s]!slfo(‘owéw)xfémq,éwom I}eg
This eipression is obtaingd 5y substitution ¢f Eq. (3.5-4)
into Eq. (3.4-4) and rétention of the appropriate terms.

As a consequence cf the three dimensional rotational
invariance of the full collision ketnel,.it is easily demon-
strated that g is also rotationally invariant. This implies
that any matrix element of g forms a tasis for the totally
symmetric representation of the three dimensional rotation
group, 0+(3). ~Thus, all wmatrix elements of E are three di-
mensional isotropic tensors. Furthermore, since the domain
and range of E_are the scalar field, its action preserves
tensor symmefty. This is to say that the tensor symmetry of
<Wépq5t)|g|W£PQST)> is identical to that of the direct prod-
uct, [Qv](q)[gb](p)[ﬂp]<P)IQu](Q)‘

If a molecular system interacts through a spherically
symmetric intermolecular potential,lit follows that

rotational angular momentum is collisionally comnserved.
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Thus, in this case, the matrix elements of g are nonvanishing
if and only if the direct products, [Hv](p)lﬂu](P) and
[gv](q)[gu]“n independently form bases for a representation
of 0+(3) which contains the totally symmetric irreducitle
representation. In this case, the matrix elements are of the

following form,

st

where g(pq)(st is a scalar coefficient.

v ST)
Now one observes that in general matrix elements of F
and A vanish unless [W ](p)[w ](P) and [Q ](q)[g ](Q) form
= - - -V -
bases which contain the totally symmetric representation,

which suggests that matrix elements of L0 (cf. Eq. (3.4-8))

should be defined by the expression,

(pgst) (PQST)y _ _,(p,q) (pgst) (PQST)
<Y léolwu > = =4 <y P9 lglwu >

p¥q

(P,Q) _ u(pPast) | ., |, (PQST)
pPol appan <Y lg ]wu > +

<W(pqst)|A|W£PQST)> (3.5-45)
From this it follows that matrix elements cf (| are,

<Wépq5t)'QlW£PQST)> -

3.5-46)
(pgst) (PQST)y _ (pgst) (PQST) (
<Y IL1Y 75270 = <y lLgl¥, >

Here, the isotropic tensors, A(p,q)' act as frojection opera-

tors for the direct product representation. The above defi-
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nition explains the motivation for the designation of éo as
the vYspherical" part of % since it rigorcusly contains all
contributions to é which do not vanish for a spherical inter-
action potential. In contrast, W is the remaining
"nonspherical" contribution and rigorously vanishes for

spherical potentials.

Now if one notes that,

_A{p,q) (past) | p_, | wPIST) (p,q) _
A pgq<wv by élwu >pqu =

(p,q) ;st,,(p,q)
zvu (ST)A

(3.5-47)

It follows that a matrix element of é'] must satisfy the ex-

pression,

B © co -
(pgst) |, -1, (Pngm) (2 (P:q) p(P,q) ,nm
<
3.5-48
A (PQ) (p,q) ;nm (p,q) ( )
o= Py (gp)) = 8
vhere béﬁ,Q)(gg) is defined as nBYBGnsamTSHBGuB., (This

fecllows directly frcm Eq. (3.5-38).

Equation (3.5-48) can be formally inverted if one
defines a new set of orthonormal basis function-operators
which explicitly diagonalize, £0+§ (i.e. the eigenvectors of
£0+§)' If these function-operators are denoted Ly the
symbol, ¢;p,q), where i is an appropriately chosen label, one

obtains the following expression due to Cooper(46),
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(P,q) |,=1,.(p,9q) (p,q),(p,q) (p,q) (p,q)y _
<o, Ly 102> 0 (2P Tp; UV y p'PrVy 5o P =

q
A(P/Q) _ (3.5-49)

Here, zip,q) is the eigenvalue of £ +f approrriate to the ei-
genvector, ¢£p,q).

In order to construct <¢£P'q)|é81|¢ipvq)>, it is neces-
sary to introduce a linearly independent set of tensors of
rank 2q which have the tensor symmetry of [QB](q) on the
first and last sets of 4 indices and which are isotrogic with
respect to two dimensional rotations about the field direc-
tion. These tensors are denoted by Véq) where m ranges from
-q to gq. A brief discussion of their form and properties is
given in Appendix B. It suffices to say here that the {éq)
are isomorphic with the usual three dimemnsional spherical

harmonics and satisfy the following relations,

(q) (a) _ y(q) 5.
Vm 8 Ymt = Ymo S BEEEE 50)
q
2(@ - ) Vrf‘q) (3.5-51)
m=-q
(q) _ . v (q) -
a'\d "q.I'l = -Ig_lmz_qmym (3.5-52)

where i in EBEq. (3.5-52) is J-1 (45).
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Thus, the matrix element of 561 appearing in Eg.

(3.5-49) can be written as followus,

<o (P |11 [0 (B b Paiy (@) (5 5.5
i z i me—q
where Vép’q) is of ramnk 2(p+q) and is defined by
"sandwiching" A(p) tetween the first and last q indices at
Véq). If one combines Egs. (3.5-53) and (3.5-49) and makes
use of Egs. (3.5-50), (3.5-51), and (3.5-52), one obtains,
t{PrD 4 in|g|p{Prd

pai _ i
}‘m

(3.5-54)

2

which can be substituted into Eq. (3.5-53) to obtain an ex-
plicit expression for the inverse collision cperator.

It is often the case that the off-diagonalities of 50
can be ignored in Eg.(3.5-48) and thus, that the lasis
function-operators,'WépqSt), can themselves bhe considered to
be eigenfuctions of £ « In this case Eg. (3.5-53) becomes,

<y (PISt) |51 |y (PASE)> 3.5-55
1+ im g(past) )3->739)

) y (P,Q)
m=-q££€'q)(§z)- 1 + m2(dépqst)2 m
(pgst) _ (p,q) ,st . <
where dv nsyslglave/zvv (ST)' This result will be

used to obtain explicit expressions for the transgort coeffi-

cients.
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3.6. The Effective Cross Sections and Some Specific Results

At the end of the last section, a general method appli-
cable to the approximate inversion of | was developed. The
same method can be applied to the inversion of the operator,
I, defined in Eg. (3.4-18). 1In either case, the inverse op-
erator, hence, the transport coefficient, are ultimately
evaluated in terms of effective ccllisicn cross sectioas.
The effective collision cross sections can be defined in
terms of the operators, 2(2) and g(I'n), which in the atonm-

diatom case are related to T as follovs,

&

(2) 1,
E = £ SN E( a) + 2(116) (3.6-1)

The matrix elements of 5(2) and I(]'n) have the explicit def-

initions,
<Wépq8t)|£(2)|w£PQST)> -
(3.6~2)
(pgst) (0) -(0),(PQST)
-<¥ IJ(fv £ Y, )>
and
<w(9q5t)|§(1,n)lw(PQST)> =
v % u
—<y (past) (0) , (PQST) _(0) i,
<Y lace "y JEON>E (3.6-3)

vhere one notes that they are equivalent to the standard

tensor collision integrals or bracket integrals,

(pgst) ,(PQST), (1,r)
‘y "y } -
¥y H AL (3.6-4)
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-1y {pgst) |, (x,n) (PQST)
[n,n, 1" '<¥) lg lvu >

Here, r is 1 or 2 and P(z'n) is just [(2). The effective

. pqst v P . .
cross section, (PQST n vn, is a scalar, and is defined as

follows(49),

¢(PIst vy,  ,(p.alP,Q)
PQST u vn '
1
(6 &, +686_68,)
VoniyB, VM T nu-2r (3.6-5)

(p,q) (pgst) | (r,n) |, (PQST) , , (P+Q)
A < ’
pPq<ty - DT 1T >pe00
where A(p’qIPfQ) is an isotropic tensor of rank p+g+l+Q with
the tensor symmetry of the tetradic direct product,
Lgvl(q)[ﬂv](p)[ﬂu](P)Lgu](Q), and Vin is the relative

thermal velocity,

(M, M )
v = (8kT n_y%

(3.6-6)
vn m MvM

n

which is appropriate to collisions between vy and n species.
A field free tramnsport coefficient, T, is isotropic and
can be written as a scalar (i.e. I = TU). In terms of effec-

tive collision cross sections, oane obtains frcm Eg. (3.5-54)

2 2
A = 5 (nk7) %) Mo 101o| ) M G(1o1o| |
Mg Vaa¥ 1010 0o

T Vv
2l£,2 Ma BB B 1010
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One notes that DuB is related to QaB by Eq. (3.3-15).

Expressions appropriate to the description cf the
Senftleben-Beenakker effects are obtained via Eg. (3.5-54).

Retaining terms of no greater than seccnd crder in (¥ yields,

T E: P LE
Ero_ T 511 T / 12, _*12 (3.6-11)

D 11, . .2 12 2
af 1+511 : b+512 1+h§12

T T g2 : 8E
_ W B v 12 12
= y? + 2] G.6-12)
Y8 : AT ‘*5?2 1+hE7 2
2 2
T T £ £
i v &y T 12
2y - 2y (3.6-13)
Dog Miegl 12 1+ngf2

vhere the field parameter, gpq' is,

bpq =

IgHykT B G (P900 B -1 H
v | + X v | ] (3.6=14)
B B BB pqOO 8B a aB pqoo aB

Here, P is the hydrostatic pressure, nkfT, 9g is the diaton
rotational g-~factor, and uN is the nuclear magneton. The po-
larizations,'WT, can be written in terms of the field rarame-

ter and other effective cross sections,

A
- (3.6-15)
- wm
B RE 1000 2
(1 = %6562 Eg&?%; (5) X XgV 26% 100018 ag”
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g
y =
ng qu (1000
- %piaq?) ggHnkT &) % XgVag pqOOlB)aB (3-6219)
2y [G(xoools) 2
wggs = (1 - %ap16q2)§§§§§T<§) e loﬁﬁTo) 28 (3.6-17)
- (1000 o8

where,

’[Eént} ® (1001 (1001
P= || {%e%ss%pq00ls 8 pg * FaVas © (pq00 8o

.,1001 (B 1001 -1
X, v, .G ( [2) + X v .G | ) ] -
[ B BB ‘1001 'B a8 a aB” 100118 .
- i
51 1010 1010 B
Qf] E?BVBB pqOOI )BB + %3V088 (pqoo g é] X
M

1010 o (1010 B (1010

anvaaG(IOIOI + Xgv, 46 (5070lg) g xa}ﬁ; Vo€ o0l )aé]

ey o /10100 (1010 M '
xavase(pqools’as[%svas (10108 s xg\/—; VegG(ig10l5)

, B8
M
8 1010 ]010
=X [H Vs | ) X,V | )
a (M, Goro 8] [[ 8Ves® (1010 B’ ag
10108 1010 (1010
+ xavaBG(1010|B)qé][%avaa6(1010| ) o *8Vos® (1010 /q ’a;}
1010,a 2 -
xaxB(vaBG(10]0|B)aB) } (3.6-18)

Comparison of Egqs. (3.€-15), (3.6-16), and (3.6-17) yields

the result,
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XM D % '
_ [ %gMg -as] )

Thus, the cross polarization is seen to be proportional to
the geometric average of the direct polarizations. Similar
expressions have been given by t'Hoof; et al.(50,51).

To zeroth order (i.e, infinite diluticm) in the diatomic

species, Eq. (3.4-15) gives,

(0) _ ,,(0),=1 ,A(0) 6
Ay (Lo ) " 2 (3-8-20)

A1) _ (1) (0),=1 pA(0) -
“og Lgo (Lo ™! 02100y 3.6-21)
L

As stated prev1ously, (defined in Eq. (3.4-16)) can be

inverted by the same method (i.e. expansion in the

nonsphericity) as used to invert |. In fact, the inversion
E

of L is less conmplicated than the inversion of | since T is

already block diagonal in the compcnents. However, construc-
tion of A(o) is complicated by the complex form of the

inhomogeneity vector acted on by (LB(”)'1 in Eq. (3.6-21).

From these expressions, one obtains the result,

2
A0 UM, (10108, - 3. 6-22)

Ma 1010 oo

where A(O) is the pure component thermal conductivity,'ada
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T (0) 0)
B B

cient is of special interest due to its sensitivity to the

(D and Qé vanish). Since the thermal diffusion coeffi-

anisotropy of the mclecular interaction, an explicit expres-

T(1)

sion for D is given,

B
T(1) _ 2 (1000) | ,, (1), =1 3.6-23
Dy ngkT<Y, | (Lgg”) |¢2> ( )
where,
A _ [ ,(1001) (1010)} /5 (1010) 1, (1) |y (10)
0p =~JE¥ ¥y * ¥g i/;f <Y ltga ¥ >
L -
-[MOLMB] -\/-2-\}\(0) (3.6-24)
"aPg 5(kT) 2

The matrix elements which appear can be written in terms of

effective cross sections appropriate to the -8 interaction.

Thus the limiting form of QT

=B
thermal conductivity of the pure monatomic gas and the scat-

is directly determined by the

tering dynamics of o-B collisions. The field dependence is
wholly contained in the matrix element of (éé;))_]'

Since the matrix elements of I(r,n) which aprear in the
definition of the bracket integrals and effective cross sec-
tions (i.e- Egs. (3.6-4) and (3.6-%)) are isctropic'tensors,
they are completely determined by their scalar contractioas.
Fach of these, in turn, can be written as a linear coambina-

tion of the scalar contractions of their irreducitle parts

which have the form,
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(3.6-25)
(p'q's't").J
g<[wv q )]ulg(r,n),[wépqst)]g>

where [yépqSt)]ﬂ is the pth component of the irreducible con-
tribution of ramk J in wépqst)_ The coefficients of the
linear combination depend upon the specific contraction of
<w$pqst)|£(r, )jwéPQST)> under consideraticn. Since the
basis function-operators are direct products of irreducible
tensors of rank p and g, it follows that J can only assume
values |p-q| € J £ p+tg. Likewise, WéPQST) constrains J by
|[P=-Q| € J < P+C, ané a nonzero scalar contraction exists

only if both relations are satisfied simultameously.

The scalar contraction of Eq. (3.6-25) can be partially
evaluated by performing the center of mass integration. To
do this, it is necessary to express the basis explicitly in
terms of center of mass and reduced relative momenta. One
can proceed by first considering the Scnine pclyncmials.

From Egqg. (3.5-10), cne can write,

(S) 2, _ S .UPS 2\ U 3. 6=26
Spei (W) uio a (W) (3.6-20)

where,
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%
ups _ ,_, u {s!TTp+s+3/2)] -
a™™" = (=) Sy TuTT (peat372T (3.€-27)

The reduced momentum, ﬁn, is related to the reduced center of
mass momentum, I', and reduced relative mcmentum, y, as

follows,

W= x,I - (-t (l-xﬁ)% Y (3.6~28)

B) and r is the molecular label of species
n. It follows from this that nﬁ

where = N M +H
Xn = HpZ g
depends on the angles of y
and [ only through the dot product x = YT and hence, the
Sonine polynomials can be written as an expansion in the

Legendre polynoamials,

(s)

= (s)
p+%(w ) = z (s +%(W )] Pl(x)

m (22-1)11 [ \*

¥ = ) st el mbnal e.e-29

= 5N p+%

L,m
The last equality is estaklished by making use of the addi-
tion theorem for spherical harmonics and the relationship be-
tween spherical harmonics and irreduciltle natural tensors.
Using Eqs. (3.6-27) and (3.6~-28), the expansion coefficient,

(s)(uz) can be evaluated as follows,

[séf;(w )], = 2 R ‘s;(w ) (3.6-30)
-1
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22+ 5 n:;r 2 (u=w) =v _2w+v ! v
= z I a’’ T Y J dx x P,(x)
( 2 ) u=0 v,w psuvw | -1 2

where the coefficient,

niro _ )
Apsuvw = (3.6-31)
ups u! 2 (u=w) -v e
a viwl (u=v=w)T Xp [l‘Xil 2%;x [2(-1)T" 1V

results from a trinomial expansion of Wﬁ. Substitution of

Eq. (3.6-30) into Eq. (3.€-29) yields,
(). (rs2 > .y m_V ,n;ir
s 1) = I z I I (-1)"a, A
P+%( n’ u=0 v,w. =0 m ( 2 “psuvw
v+w<u

x p2(u=w)=v-2 Yzw+v-z[£];[1] fm (3.6-32)

vhere,

1
az = 12%%%};i {1 ax x’ Pl(x)

Ltv, (3.6-33)

(2041) 1v! (X'-Z*—) '
= X[1+(~1) )

(21)2 (L2

The standard formula for the irreducible temnsor ccmpo-

nents of the direct product of two (commuting) irreducible

tensor operators, [g](p) and [g](q) is,
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J=

[[51‘“’[21‘“"1u

z (-1)’L""""‘(ZJ+1);5 I’; ;: _'g ~[§._]:\ [13];: (3. 6=34)
m m'

and the inverse relation,

[_A_ll’;l (B];: - (3.6-35)
p (0t T eaen¥ (2D T A g T

J,u

For the special case of A = B, the latter reduces to,

1} k) =

r (-n¥ (2 e _J) cte,2',na* " "I a)d  (3.6-36)

J,u m ¥ -
where,
c(e,r',J) =
X(o+2'=T) 211 (23) ! L &' J
2 - (2041) S 12201 {0 0 0)3,6-37)

if the vector operator, A, commutes with itself. Equation
(3.6-36) can be easily established by relating [A]ﬁ to Yﬁ and
using the standard expression for the expansion of the prod-

uct of two spherical harmonics in terms of spherical harmon-
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ics.

One now proceeds by using Eg. (3.6~34) to express the
irreducible tensors [[gn](P)[gn](q)]J in terms of [gn](p) and
[gn](q). Making use of Fq. (3.6-28), cne canlwrite'[ﬂn](P)

in the binomial expansion,

P -
P _ pk k (p=k),pP 3.6-38
o )5 . L Ut n, ( )
vwhere,
pk - [P Ky T+l . 2 %,p-k - _
B, (k) (xn) {(-1) (1-Xp) } . (3.6-39)

One then carries out the sequence of steps:

a) One first couples the I' dependence of Egs. (3.6-32)
and (3.6~38) using ®g. (3.6~36).

| b) Next one couples the y dependence of Egs. (3.6-32)

and (3.6-38) using Eq. (3.6-36).

c) Finally one couples the y dependence of b) to the
decoupled o dependence of [[Wn](p)tgn](q)]].
Having carried out these three steps together with standard
recombinations of 3-j symbols, one obtains the following ex-

pression,

(pgst),J _ ,_;ym ¥ [c J K

¥, 1y = 1) G}:K (2K+1) My b 0
M; Q

(3. 6-40)
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u,v,w G
g.,k,2
where the coefficient A%(J,G,K) is defined by,
A3,6,8) = (-1)FH PR (o541) (2p41)1%
Agsuw nc(ﬂ. K, G)c(z,p k,q) B x (3.6-41)
pHqHl_ % y (9P G ) [GJIK
[2 n F(p+3/2)P(q+3/2)th] X £ p-k 9.9 p
and the basis function-operator, [¢(M) g, is defined,
(MK _ (t) ;n2, P-g+2w=k+V (g9) (g j(9)4K 3. 6142
[® ]Q. sq (Qn” ({y] [-—n] ] ( )

Here, M is a collective notation for the set of variables,

{p/q9ssst,u,v,w,g,k,L} which are the original basis fuactioan-

the reduction of wépqst) that are not final tensor indices
(i.e. {u,v,w,g,k,2}), and M represent the subset of these

indices, g, j = p-g+2w-k+v, g and t which are indices of ¢(M)

analogous to the indices pyst in the definition of wépqst)_

Making use of the fact that

2 G Mg _on

T T

rar e ns (23 gy =)
G

- g 28 ‘G':) L1206 +13L 5 g (3.6-43)

] ]
G)! G+N(G+N)! GG MGMG

results in the expression,
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ltl.v ﬁ"\)
‘o (J;r,n) = ;] cRiVig,R)  (3.6-uu)
M']
<[¢(M')]g|£(r:n) l [(I)(M)110<>
where,

MY
Cii, o (J.K) =

2.G
[2L(M,M')+1]! (G!)“2 o v
; z A=(J3,G6,K)A=, (J,G,K) (3.6-U5)

where,

) (3.6-46)

[M] uvwgkt

That is, a sum over all dummy indices of M, and L (M,M') is
utu--w-w'+ (k+k'-v~-v') which is always an integer for nonzero
=y .
values of G% ' (J,K) .
In conclusion, the resulting form of Eg. (3.6-44)

prompts the introduction of the notation,'{wg?Wﬁ}éIar), to

denote a general scalar contraction or scalar collision inte-
gral. Here, WC and Wﬁ are tensor functions of dynamical var-

iables and are of the same rank. Thus,

-

v 3(1,T) _ .1 - (r T])H- G : 3.6-47
e? 3o n,n. <K IRer )

where U is an isotroric temsor defined such that Wg?ﬁgu =

W;??E. (The symbol © means that all possible contracticams

are taken.)
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The effective collision cross section appropriate to the
above scalar collision integral is defined,

(1,r) _ 1~ = ,(1,1) 3.6-48
wv,n 'v\m{“’ve‘*’u}v.n ( )

S
G(wvaw
Finally, the reader should note that if Wc and Wﬁ are func-.

tions of translational momenta only through Yy, then the (1,I)

superscripts become superfluous and can be ignored.
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4. EVALUATICN OF SCALAR CCILISICN INTEGRALS AND

PHENCMENOLOGICAL CRGCSS SECTIONS

4.1. General Consideraticns

In order to oktain numerical values for the previocusly
developed expressions appropriate to the phenomenclogical co-~
efficients, one must evaluate appropriate effective cross
sections (i.e. scalar collision integrals); This is accom-
plished by the explicit comstruction of the collision kernel,
followed by the application of analytic or numerical methods.

In this chaptér, effective cross sections agrlicable to
the description of atom-diatom systems will be evaluated by
application of a number of different dynamical approaches.

The scalar collision integrals, hence, the effective
collision cross sections, can be viewed as thermal averages
of energy-dependent cross sections under a Maxwellian distri-
bution. Explicit evaluation of the energy-dependent (or
phenomenological) cross sections is of interest since these
quantities provide detailed information comncerning the role
of rotational degrees of freedcm in collisional fprocesses.
The preceding statement is especially true of cross sectiomns
which are appropriate to the description of Senftleben-

Beenakker effects.
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4.2. Central Potentials in Classical Mechanics

Evaluation of scalar collision integrals and
phencomenological cross sections assuming a spherically sym-
metric interaction potential from a classical mechanical
point of view has already been extensively studied(52). If
one approximates an atcm-diatom interaction with a central
potential, there is no possibility for the description of
inelastic interactions. This feature, of course, makes such
a poteantial inappropriate to the description of Senftleben~
Beenakker effects. However, a brief discussion of central
potential dynamics is ;ncluded here as a reference for later
development (also central potentials are completely adequate
to the description of atom=-atom collisions).

For molecular systems which are adequately described by
classical mechanics, the coliision kernel can be written
using Eq. {(2.1-46). In this case, only the linear momenta
are meaningful dynamical parameters so that Xqe Xpe x{, and
Xé can be identified as individual molecular momenta, E,, By
Ry, and RS- If one assumes that the convex surface, 01'2, is

(i.e. maximum impact paranme-

spherical with a radius of bmax'

ter), the collision kernel takes the explicit fornm,

<E122,9‘E'2'> -
: 2

b [akk-p/u{6(p'-p*) - 6(p'-p)}6(P-R') (4.2-1)
k-p>0 °
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Here, p and P arz defined as relative and center of mass
momenta derived frcom El and 92 (i.e« P = (nlgz - MZEI) X
1/(!11 + Hz) apd P = B, + 21) and y is the reduced mass. The
momenta p' and P' are related to g; and Bé in exactly the
same way. The vector gquantity, g* is defined as the
precollisional relative momentum which is dynamically related
to the postcollisicnal momentum, p.

Equation (4.2-1) is substituted into Eq. (3.6-4) and
then integrals over total momenta, P and P', are performed.

One obtains the following expression,

. - e ey2_
(Y397 1, .0 = Pnay” 3/2[%1:%1*jdﬂdkk-1e Y wso(vt-wz) (4.2-2)

where Wc and W; are temsor functions of the dimensionless
relative momentun, Y-

The scalar collision integral,'{?;é?%}vw, can be written
in terms of Chapman-Cowling omega integrals which are defined

as fcllows (39,40),

.2
gt:8) (1) o [%llﬁ(f,dve Y2t g .23

(t)(E) has units of area and can be identified

The quantity Q
as a phenomenological cross section (referred to hereafter as

the "Q-cross section”). It is a function of the relative
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kinetic energy, E = ktyz, and has the forn,

1

2 f(l-(cosx)t)cosed(cose) (4.2-4)

(&) _
Q (E) = 21rbmaxo

Here, 0 is the angle between the surface normal, Kk, and the
relative momentum (i.e. coso = k x/]y|)- The scattering

angle, x, is defined ty the expression,

X (E,cos8) =
- T dr -
T meaxcosei e (4.2-5)
: 3

In this expression, V(r) is the intermolecular potential and
T, is the distance of closest approach. (ﬁm is a function of
E and coséf.)

These expressicns can be evaluated analytically for a
few simple types of intermolecular potentials (e.g. a “hard"
potential) but in general they must be calculated by a
suitable numerical technique. An efficient algorithm using a
Curtiss-Clenshaw guadratuie technique has been developed by

O'Hara and Smith(53).
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4.3. Hard Convex Ovaloid Potentials in Classical Mechanics

In the last section, it was noted that scalar‘collision
integrals cah be evaluated analytically for hard sphere po-
tentials. This is because of the inherent simplicity of
impulsive collision dynamics. Making use of this simplicity,
Hoffman (54) was able to greatly reduce the complexity of the
scalar collision integrals for any hard convex interaction
under the assumption that contributions from collisions with
multiple impulses (chattering collisions) can be neglectedqd.
This assumption is valid for interactions which have a
predominantly spherical component, but breaks down for sig-
nificantly nonspherical interactions. A quantitative discus-
sion of this point appears in Section 4.5.

An explicit expression for the collision kernél, using
this approach can ke obtained from Eq. (2.&-&6) by construc-

ting the convex surface, » SO as to enclose an appropri-

“1,2
ate "excluded volume". The surface, 01'2, is defined as the
locus of points occupied by the center of mass of an incident
molecule (molecule 2) if the point of contact between
interacting molecules is allowed to range cover the whole
surface of the target (molecule 1) with both molecules having
a fixed orientation and the center of mass of the target
being fixed. It can be shown geometrically that the
convexity of moleculés 1 and 2 guarantee that 01'2 is 3150
convex.
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Any convex surface is conveniently described in terms of

a supporting function, h, which is defined as follows,
h =2k (4.3-1)

Here, ¢ is a vector from a fixed origih {in this case, the
center of mass of the target molecule) to a point on the
surface, and kK is a unit vector perpendicular to the surface
at the point. Equation (4.3-1) can be inverted to yield the

explicit expression for the radius vector,

T = hﬁ o+ — (0'3'2)
- ok

Here, the differential operator'g% is explicitly defined as

0 ) = rk
r5§ - E@f.where r rk.

Since 9y 5 is convex, it follows that a differential el~
14

ement of surface area on ¢ dA , 1s related to a dif-

1,2’ 9,2
ferential solid angle, dk, by the expression,

dAc1’2 = 301'2dﬁ (4.3-3)
vhere 30]’2 is defined in Eq. (2.1-45). The tensor,.ag/aﬁ,
has nonzero components only in the two dimensiomnal subspace
perpendicular to K. From the definition of the determinant

in terms of the Levi-Civita demsity, it follows that

can be written in the form,

= 1 3% %)« (BExR -
s°1,z -7(-5%Xk).(§éxk) (4.3-4)
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When the molecules are in contact, it follows that the
radius vector of 01’2 can be defined as fcllows,
=4, =%, =hk, + 331 - h.k, - EE— (4.3-5)
1 2 1 3E1 272 aiz
Here, h1 and h2 denote suppbrting functicns for mclecule 1
and molecule 2, respectively, and R1 and Ez are corresponding
unit surface normals taken at the point of contact. At this
point, the convex todies representing the interacting mole-
cules share a common tangent plane. Since Rl and kz must
both be normal to this plame, it is clear that R, = -kz.
Thus the unit vector, k = il' is perpendicular to o) 2 at the
endpoint of ; and the supporting function, h, appropriate to
01,2 can be regarded as a sum of the mclecular supporting
function (i.e. h = h1 + hz). |
For an atom-diatom systém, the atomic species will be
modeled by a hard sphere and the molecular species by an
ellipsoid of revolution. The spherical and axial symmetries
implied by these models reguire the supporting fuanctions to
have the forms,

h, =7y hy= hB(Eoé) (4.3-6)

-~

vhere ro is the radius of the sphere and €@ is the unit vector

parallel to the molecular symmetry axis. The collision
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kernel appropriate to atom=-atom interactions retains the same
form as given in Eg. (4.2-1). The atom-diatom collisicn

kernel then is,

£! 27
1P 10 — 1 \ >\ 1 o ' '
<p;¢;,pyl0lpj&ips> = — édn{i.égodksol ,(Rk-gs(p -p) 8 (£;-2,)
unit

hemisphere
(4.3-7)

.. ‘. ._t -ﬁ _ '
+ dES°1 Z(E)k gé(p'-p )8 (L3-2,)} S (B-P')
k-g>0 ' '
unit
hemisphere
Here, p, p's p%, P, and P' are defined as in Eq. (4.2-1) and
ﬂT is defined as the precollisional rotational angular mo-
mentum (i.e. @ﬁ is related to &1 in the same way that p* is

related to p). The Jacobian of the surface transformation,

S (k), is given by, .,
o

S, (k) =S, + 2rghg, + xg (4-3-8)
1,2 B

which results from substitution of Eg. (4.3-%5) into Eg.
(4.3-4). Here, SnB is defined such that a unit surface area
on the diatom ovaloid, dAnB' is related to a unit solid
angle, dk, by SnB (i-e-, dAnB = Snsdk).

The velocity relative to the surface, g, is defined in
Eq. (2.1-41) as z—g]-agq/BQI-gz'Bgz/agz. In Eq. (4.3-7) the

diatomic molecule is arbitrarily labeled by 1 and the atom is
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labeled by 2 which implies that o, can be identified as @ and
@, can be ignored (i.e. there are no orientation angles for
the atom). Fprthermote, o is not a function of @. The only
internal degree of freedom of the system consists of the ro-

tation of the diatom with angular velocity, él/I It is

B.
well-known that the time derivative of any body-fixed vectocr
due to the rotation of the body can be obtained by the cross
product of the angular. velocity with this body-fixed vector.

Thus, g has the fornm,

g_=# - (4.3f9)

where uuB is the reduced mass of the atom-molecule pair. If
one substitutes Eg. (4.3-2) into Eq. (4.3-9) and evaluates

E-g, one obtains the following expression,

3h
Reg = Kp _ I Rep x 8 (4.3=10)
IJGB IB - —BT ;

This expression and Eq. (4.3~8), when substituted into Egq.
(4.3-7), yield a Boltzman collision kernel from which the

following form of the scalar collision integral

- 2 227
' __ 1 =1/2,2KP% o1 -y°-Q
| faks_  (R) (R-y - a-@VY + _ [aRS_  (R)

k-g<o 1,2 N T kg0 %1,2
unit hemisphere unit hemisphere (4.3-11)
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- _."ﬁ
(key - a-2)¥ 67 _

is obtained. The vector quantity, a, is defined by the ex-

pression,

U dh
= - aB;E e B
a= -l I, 1%k x 8—2(z2) (4.3-12)

where z is defined as k-e.

Following Hoffman (54), it is possible to define a
vector, g, in a five dimensional Euclidean space, E5, in
which ¢ is comprised of the three Lody-fixed compcnents of
and the two active kody-fixed compoments of Q. (The body-
fixed 2z~axis is assumed to parallel to ©.) Imn addition, a

5

unit vector, k, can be defined in F° by the expression,

k = (k,-a)/D : (4.3-13)

where D is defined as [1 + az]%. This is consistent since a
has only two nonzero body-fixed compoments, both of which are
in the same plane as Q.

One can define two 3x5 rectangualr "projection" ogera-
tors, 3P$ and 3P3 which are functions of the components of &

and act between the abstract 5-space, Es, and the usual

physical 3-space, E3, as follows(55):
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3 3

Sc 3 Y 5. -
Pl'eE=Y; Pyre =2 (4.3-14)

where ¢ = (y,Q). Since the tensor quantities, V¢ and ?r are

exclusive functions of y and @, it follows that 3P$ and 393

can be used to construct composite operators which act be-

tween Es and E3 as follows,
3.5 u_ =, - 3 _ o
Prs gle)” =¥ ; P%T gV =y (43713

Here, u and v are the total powers of V& and W} in the

dynamical variables. If omne contracts 39%, with 393 in the
\Y n
three dimensional manifold, one obtaimns an ofperator, 39%;own
n
such that,
3 ‘5. u+v = .-—. vord -
Pye7 udv(E) = TV (4-3718)
Thus, Eg. (4.3-11) takes the form,
- e 2
(Y 97 } = - L g=7/22kT,% €7 (3a 3.5
vty 5 1*faee™™ [a& *p3
0 Mo unit WQGWTu$v
hemisphere
(4.3-17)
- Jaks,  (RID(e)"(e) Ve R +_ [aks_  (R)D(e)%(e™ Ve R
k'2<0 1’2 ﬁ.a>0 01’2 . - — —
unit . unit
hemisphere ' hemisphere
The operator BPg'dW will be abbreviated as P in subseguent
v T

expressions.
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In the case of a hard anisotropic potential, the unit
vector, K, can be interpreted as a generalization of the apse
vector one encounters in the dynamics of elastic interac-
tions. For an elastic interaction, all components of the
relative momentum are conserved in collision except for the
component of the relative momentum parallel to the apse
vector which reverses sign. Correspondingly, for hard aniso-

tropic molecules, the collision dynamics are quantitatively

described by a reversal of the sign of € k-% while the

other components remain unchanged. Thus, if ¢ is defined as
e—eKE (i.e. € = c + eKE), then ¢% = ¢ - EKE. This allows
the expression for the scalar collision integrals to be writ-

ten as follows,

{-‘7\"»'71}\:,0) =

_%'ﬂ-7/2[§kT]5 fdé deS
Vw unit unit
sphere sphere

0y o BIPRGy (@) (4-3718)

Here, (u,v) is a tensor guantity of rank u+v defined by the

expression,

(u.v)n =

2 @ -52

-c K u u v
Jdce lédeKe [(c-e R)™ - (c+e R) ") (c-e R) €, (4.3-19)

En-l
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In the expression for (u,v)n, C is treated as a vector in an
g?! space orthogonal to K where K is a basis vector of ER,
(For the case in point, n equals 5.) Equations (4.3-18) and
(4.3-19) are obtained from Eq. (4.3-17) by noting that the
conditions previously placed on the integration over k can be
replaced by equivalent conditions cn the integration over €
Following this, the.integratign variable, € in the
precollisional term is'exchanged for -€. SO that all integra-
tions over €, are ketween limits of 0 to «=.

Equation (4.3-19) can be simplified by noting

n . .. ) .
= L@ @l .3-20
JB

- -n
(ccte k)
where c is the magnitude of ¢, & is c/c and £(8)™ 3 (7)3x is
defined as the sum of all distinquishable permutations of ‘the
tensor indices of the direct product (E)n'j(E)j. If one sub-
stitutes Eq. (4.3-20) into Eq. (4.3-19) and makes use of the

following identity.for arbitrary integers n and s,

n
, © = [1'-—-];5 {(x )5/23 s even
fd&(é)sfdccn+s-1e-c 28 =n-1

4.3-21
unit = 0 s odd ( )
n-1 sphere
(Here, én—l is the identity teasor on En"), one obtains the
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result,
n-1
' 2-n v+j
+
(), = ="V 2 ) ]
2 j=1 k=j
j rodd k even if u+v even
k odd if u+v odd
i (4.3-22)
3 (u+v=-k)

k/2 k ~y3J oo k-3
2/ °kT (P LR) LT, ~RR) }(R) 5T
Here, Pu v[m} means "the sum of all distinct permutations of
, .

the first u and last v tensor indices of the temnscr appearing
in the brackets.™

Equation (4.3-18) can be reduced to a single guadrature
if one notes that thke S (k), D, and P9, (u,v) are func-

1,2
tions of K and & only thréugh the dot product, K-é. One

obtains the result,

i
]
e
—

1
= -2773/2 2k} 14,5
|4 (o]
v -1

1 2(z)DgMgv(u,v)5(4-3'23)

One can evaluate Pu?_v(u,v)5 using Eq. (4.3-14) and the

following identities,

3P5-;5 =U ; 3P$~E = k/D (4.3~24)
p>-Ig = U-8& ; P2k = -a/D (4.3-25)

vhere, U is the usual E3 identity operator. Proceeding in
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this way and noting that a-k vanishes, one finds that the
scalar collision integrals for an atom-diatom interaction can

be written as linear combinations of the following basic in-

tegrals,

1
x®) = fazs (z)D ™ (4.3-26)
-1 91,2

1
pinm fdzso (z) 2™ P (4.3-27)
-1 1,2
W 1 2,,_.2 o
G = [-f'ﬁ];‘(bz-az) fdzs:,'b(z)i—g—g—) (4.3-28)
8 -1 0 h3D

These integrals can be evaluated numerically by use of Gauss-

ian quadrature techniques.

4.4. Realistic Anisotropic Potentials in Classical Mechanics

In the two sections immediately preceding this one, dis-
cussion is given which concerns the evaluation of the scalar
collision integrals (and hence the effective cross sectioans)
using very restricted classes of molecular interactions
(i.2., central andsor "hard" convex intermolecular poten-
tials). These limitations were imposed because the simplic-
ity of the dynamics implied by these potentials allow partial

analytical evaluation of the scalar collision integrals. 1In
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order to evaluate the scalar collision integrals for
realistic anisotropic potentials, cne must resort to numeri-
cal techniques such as Monte Carlo or Liophantine integra-
tion.

Before discussing the numerical techniques, appropriate
- expressions for the atom-diatom collision kernel and atom-
diatom scalar collision integrals must be given. The evalua-
tion of realistic atom-diatom scalar collision integrals is
complicated by the infinite interaction ramnge of a realistic
interaction potential which means that 0]’2 cannot»be chosen
in such a way as to represent a physically meaningful "ex-
cluded volume" as was the case in the discussion of hard
ovaloids. Thus, 01,2 is conveniently chcsen to be spherical
since there is no advantage to be gained in exchange fcr a
preferential nonsphearical choice. This results in the fol-

lowing form for the atcm-diatom collision kernel,

2
L.b- 27
: 1PInty = 1 Mmax ==, P Jp
< &ippl0lRi81Ry> = —57 - (f)dnﬁ{;};ok B/u o {6(p"-p%) 8 (-2
- S(p'=p) 8 (&;-L) 38 (B=R") (4e4=1)

Here, b, . denotes the radius of ¢ (i.e. maximum impact

m 1,2

parameter.) An expression for an arbitrary atom-diatom

scalar collision integral has the form,
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2_.2
: _ 1,2 _=7/2,2kT % dQ( . _~R°-y
(0 = tonay™ TG T are
27 - w

This expression ié analogous to Eq. (4.3-11).

The expression given in Eq. (4.4-2) is formulated in
terms of integrals over postcollisional parameters. It can
be equivalently formulated in terms of integrals over
precollisional parameters. In fact, such a formulation is
perhaps more appealing since it involves scattering out of
rather than into a dynamically prepared state. The transfor-
mation from a postcollisional to a precollisional expression
proceeds as follows.

A dynamical trajectory through the region contained

within ¢ can be symbolized as follows,

1,2

Here, z¥ and z denote the sets of dynamical rarameters,
{1#,Qﬁ,n*,ﬁ*} and {y, @, n, k}. 1In order for this
trajectory to exist, E*-lﬁ must be negative and E-l must be
positive (i.e. z¥ must be precollisional and Z must be
postcollisional). The time reversal symmetry of classical

mechanics implies that the time reversed image of any given

trajectory is mechanically allowed. Thus, one can write the
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following expressicn,
AN Al (4. 4=4)

where Z and 2* denote the time reversed sets, {-y;—g,n,ﬁ} and
{—Y*,—Qﬁ,nﬁqiﬁi, respectively. It should ke noted that

N, N, E*, and k are evaluated at the pcint whgre the
trajectory pierces 01,2.

One can define the following functional relatioas,
z,(2) = z® (4.4=5)
z2.(2%) =z (4.4=6)

In a similar way, one obtains the expressions,
z;(i*) =2, 2.(2) = z* (4o4-7)
from which it follows that,
z,(z) = 7&(?) (4.4-8)

The quantity Wf appearing in Eq. (4.4-2) can be thought of as
a function of Z*. Hence, ff(i) can be substituted for z%.
If one exchanges the integration variaktles vy,Q for -y,-Q one
obtains the result,
{(Te¥ 3} = .1p2 _=7/2.2kT.%,d2(. ~-02-y2
VO TV, T TEPnax” [552172/SE faye™ =Y
w

(4.4-9)
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rl i
an [ak k-vTe(7.-7) (-1)"
{)nﬁ'-ryso TR

Here, n equals 1 if W;@@; changes sign under time reversal
and it equals 0 if T&@W; does not change sign. The solid
star denotes a postccllisional quantity, ?:, which is dynami-
cally related to a precollisional gquantity, @g.

The impact parameter, b, can be defined as bmaxi-liy.
From this definition, it follows that the double integral
over the angles of k appearing in Eg. (4.4-9) can be replaced
by integrals over tlke impact parameter, b, and an angle, €.

One obtains the result,

(2% L g 7/2f$2dﬂe -2* fy aye " [ag

{¥'°? }, =
T Vo M unit
b sphere
2% “max 2%
fay fdnjbdb faew (¥ =¥¥) (- -1" (4.4=10)
unit 0
sphere -

The angle, g, is taken about an axis defined by the direction
of the precollisional linear momentum, vy.
The Q-cross section, Q(WGQWT) can be defined in a manner

analogous to that given in Eg. (4.2-4) Ly

]
Q(?v?wt) E .
-s=-s' 21 “max 2% . n{4-4-11)
Jay [ad fdnfbdb ]de\m(‘!" -!") (=1)
2. 17unit unit O
sphere sphere.

vhere s and s' are taken respectively as the order of'VG and
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WT in |Y}. 'Thus, in analogy to Eq. (&4.2-3),

(VeV} =

] %}odye-YZ yS*S '+3°fszdne'92 [16Q(F107 )]  (4.4-12)
vo O 0

It is clear that Q(WC@W;) can be regarded as a functiocn of

two independent variables, namely the reduced translational

and rotational kinetic emnergies.

Evaluation of scalar collision integrals and/or Q-cross
sections for a realistic anisotropic interaction requires
evaluation of nontrivial nine-fold or seven-fold quadratures
respectively. The standard numerical techniques which are
well-suited for the efficient evaluation of a single
gquadrature are impractical in these cases due to the sheer
number of times a particulér integrand must be evaluated in
order to attain a reasonably accurate result. In particular,
the number of points, A, at which an arbitrary integrand is
sampled in order to oktain a given accuracy rises roughly as
AN where N is the multiplicity of the quadrature.
Additionally, this prollem is exaéerbated by the fact that
realistic collision dynamics in general are very complicated
and can be evaluated only with much effort. These difficul-
ties can be partially overcome by the use of Monte Carlo

techniques.
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An integral of an arbitrary function, G, of a vector,
£, in an n dimensional Euclidean space, E?, over limits
defined by an n-cube of unit volume, obeys the following

inequality,

N 11 N .
JG(£Ma%) > I-[age@) > ¥ 16 (EF (4-4-13)
=1 j=1

=-Ccu

Here, the n-cube is taken to be divided into N partiticns of
equal volume. The vectors, é?ax and g?ln, define particular

points (not necessarily unique) in the jth

partition for
which the value of G(f) is maximum and minimum respectively.
From the mean value theorem, it fcllows that a vector, Ej,
can be found within each partition such that the following

equality is valid,

2] =
e~
(3]
o

11
) = [~[AEG(E) N C Y 1)
5.8

The Monte Carlo estimate, sg, of the above quantity can
be defined by evaluating G(£) at N poinrts randomly chosen
within the unit n-cube followed by a summation over the se-
lected points. It has the form(56),

1 N

N'XlG(éj) (4.4-15)
Jlll

N _
Sg =



159

If each term appearing in the sum on the right hand side of
Eg. (4.4-15) is written as a Taylor series expanded about on=2
of the corresponding values, Ej' (where the index, j, is as-

signed so that N-1X|§.—§j| is minimized) ome obtains the

3 J
result,
N e (£.-E) k
N 1 d
Sp - Ip = = ) 2—1—3—< VB(E))  (4.u-16)
G T TG Niiy Gk, kaES

Clearly, one notes that the first term of the Taylor series
is just IG where IG synbolizes the integral appearing on the
right hand side of Eq. (4.4-14).

If the number of partitiomns, N, (i.e. the number of
randomly chosen points, éj) is allowed to increase without
limit, it follows that the gquantity, |§j-§j| tends to zero.
This is to say that as N tends toward infinity that the
distance between an exact integrating point, Ej, and a

randomly chosen point, éj' becomes indefinitely smail.

An iaportant adjunct to the direct Monte Carlo 2=stimate,

N
G'
S%; It follows from the central 1limit theorem of statistics

S is a reliable estimate of the randcm error inherent in

that the probability distribution followed by any observable
quantity which is derived from measurements which are subject

only to random fluctuations is a normal Gaussian. The Monte
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Carlo estimate, Sg, can be regarded as just such an observa-
tion (i.e. subject to random fluctuations). Thus, the square
root of the variance of this quantity as it is normally

defined by statisticians is a suitable measure of the expect-

N

G* The variance, 02, is defined as follows,

ed error in S
o = [ag,~fag, (s - 1.)2 (4. 4=17)

Here, each of the integrals are taken over the usual uait n-
cube.

If one substitutes the explicit form of sg from Eq.
(4.4-15) and performs the integrations, cone obtains the
result,

2 2

2
No© = 0g = )

1
-fag(G(g) - Ig
ube

(4.4-18)

n-c

Thus, the expected error in the Monte Carlec estimate is pro-
portional to N_%. A suitakle estimator for the expected
error is AN N

G G
is the Moante Carlo estimate ofoG),

where 4, is defined by the expression, (i.€., Ag

ag = l%,Z:G(Ej) - sg)zl’5 {4e8=17)
= ’

In practice, Sg and Ag can be evaluated simultaneously for

some set of N randcmly chosen points.
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Both the scalar collision integrals and the
phenomenological cross sections for a realistic potential can
be evaluated as Monte Carlo estimétes. Explicit forams for
the estimators ars obtained if one defines the fcllowing set

of varijables,

- _mn _ €
= 3r r 82 =37 (4. 4-20)
1-cosfq _ ¢9
E3 5 v 84 = 37 (4. 4-21)
g, = 1-S0S8y S (4. 4-22)
5 7V v kg = 7 .
b
&, = § (4.4-23)
max
_ -0?
Eg =1 -e (4.4-24)
-
Eg = 1 = (14y5)e”Y (4. 4=25)

Here, 8gs 0o/ eY, and ¢Y denote the angles of { and ¥. If

one defines a seven dimensional vector, 5(7), and a nine di-

é(g)' as being ccmprised of components

mensional vector,
given by El through §7 and £] through 59, respectively, Egs.

(4.4-10) and (4.4-11) take the following fornms,

{-q’-\.)QVT}\),w =
[ZEE-]15 4%b
VW

11 (9) . <t . n(u.u-zs)
ax £_-£d§ b¥e (¥ -¥1) (-1)
9-cube
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2nb 11
v'ew _ max (7) - - n -
QT = — o [-Jag PPV T (-1 (4.4-27)
7-cube

Algorithms designed to evaluate Egs. (4.4-26) and (4.4-27) as
Monte Carlo estimates consist of three stages. First, a
randonly chosen set of integration points (i.e. §(7), é(g))
is generated by an appropriate pseudo-randcm number
generator. Second, these are converted to dynamical parame~
ters by inversion of Egs. (4.4-20) through (4.4-2%) and ?:

is evaluated by numerical integration of Hamilton's eguations
within the collision region. Third, the resulting set of
collision trajectories is used to compute Monte Carlo esti-
métes via Eg. (4.4-15).

It should be noted here that 57 is defined as b/bmax
rather than bz/biin which causes the integrands appearing in
Egs. (4.4~26) and (4.4-27) to contain the impact parameter,
b, as a weighting factor. The result of this procedure is
that the 2valuation of these integrands is biased toward
regions on the preccllisional hemisphere characterized by low
values of the impact parameter. This bias is desirable be-
cause the strongest and hence most signifiéant interactions

occur precisely for this case. This is an example of a gen-

eral technique known as importance sampling which can te used
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to improve simple Monte Carlo estimates Ly biasing the randon
sampling of a particular estimand toward regions which con-
tain the most significaat contributions to the overall esti-

mate (56) .

4.,5. The Method of Control Variates and a Quantitative

Discussion of the Effect of Chattering Collisions

In the last section the Monte Carlo estimate of a multi-
dimensional definite integral was given. It was found that
such an estimate converges at a rate which is inversely pro-
portional to the square root of the number of random points
at which the integrand is evaluated. While this convergence
rate represents a vast improvement over alternative
guadrature methods, in practice, an integrand characterized
by a moderate variation must still be evaluated at a large
number of points (usually several thousand) in order to
obtain a.reasonably accurate result,

It seems likely that if a significant correlation exists
between a "difficult" problem which requires the application
of a Monte Carlo technique and a "simpler" problem which can
be solved either analytically or with scme éfficient numeri-
cal technique, that this correlation can be exploited to im-
prove the convergence of the simple Monte Carlo estimate.

This idea can be quantitatively applied to the evaluation of
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definite integrals ty modification of Eg. (4.4-15) as

follows,

sg(G') = %jgi(c(_g_j) - G'(_g_j)) + I, (4.5-1)
Here, G'(§) is termed a "control variate! of G(g) and is a
function of { which exhibits a positive correlation with the
functional behavior of G(é)(56). It should be emphasized
that G and G' are evaluated over the same set of randomly
chosen points. The guantity, IG" is defined by the expres-

sion,

IG' =

n

1
_Idégl(g) ' (4.5-2)
0

I O-——

cube

and must be able to be evaluated to an arbitrary accuracy via
an appropriate analytic or numerical method.

It is found in the cases considered in this work, that
the method of control variates improves typical Monte Carlc
estimates of scalar collision integrals or energy-dependent
cross sections by reducing expected error estimates,
typically, by a factor of two to four for a given set of N
randomly chosen integration points. The degree of improve-
ment is a measure of how closely the primary and control in-
tegrands are correlated. It is useful to give as an example

-of the control variate method a calculation of the Chapman-
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(]'1)*, for a Lennard-Jones 6-12 po-

Cowling omega integral, Q
tential as a Monte Carlo estimate for a reduced temperature
of 1.824 and using the value of 9(1'1)* apgpropriate to hard
sphere models of varying radius, R, as a contrcl variate.

The expected error estimates are plotted in Fig. H.1 versus
the reduced hard sphere radius, R/o. (o 1is the usual
lLennard-Jones force constant.) The actual deviaticns of the
control variate Monte Carlo estimates appear as isolated
points. Both quantities are esvaluated for twec sets of 10,000
randomly chosen integration points. The obvious minimization
of the expected error at R/c egqual to 0.95 illustrates the
applicability of the control variate technique. The expected
error estimate is reduced for the optimum hard sphere radius
by a factor of three over the corresponding uncorrected
value. Since the expected error converges as N"%, this
three-fold improvement of precision corresgonds tc a primary
uncorrected Monte Carlo estimate oktainable bty a nine-fold
increase in the number of integratiom points evaluated (i.e.,
90,000 versus 10,000) .

One possible choice for a control variate which is ap-
plicable to the evaluation of scalar ccllision integrals or
phenomenological cross sections of a realistic anisotropic
potential is the corresponding integral evaluated for a
spherically symmetric potential. A shortcoming of this

choice is that no significant improvement cam be expected in
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estimates of quantities which . involve only the anisotropy of
the interaction. Accurate values of the centrcl variate can
be easily obtained Ly suitable analytic or numerical
techniques.

Another possible choice for a control variate applicable
to the above situation is the corresponding quaatity evaluat-
ed for a hard ovaloid interaction. One shculd be able to
obtain improvement of all estimates since anisotropic contri-
butions to the interaction potential are explicitly taken
into account. However, as was noted previously, the
"projection” operator techniguesﬁdeveloped to evaluate the
scalar collision integrals for hard ovalocid interactions in
Section 4.3 possess a systematic error due to the neglect of
"chattering" collisions. In principle, it is undesirakle to
ever introduce systematic error deliberately into a Monte
Carlo calculation. In practice, systematic errors which are
negligible compared to the prokable randcm error inherent in
the calculation will not affect the numerical result. The
utility of hard ovaloid control variates can be judged on
this criterion.

For hard intermolecular potentials, chattering interac-
tions are unambiguously defined as binary ccllision events
which involve more than a sindle impulse. Chattering cannot
occur for hard sphere interactions. The frequency of

chattering is, as expected, directly related to the degree of
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anisotropy inherent in the intermolecular potential.

The chattering frequency can be approximated by a
suitable Monte Carlo estimate which consists of the ratio of
the number of chattering collisions to the total number of
collisions for some set of randomly chosen classical
trajectories. A description of the algorithm used to comn-
struct hard sphere-hard ellipsoid trajectories is given in
Appendix C. Results obtained by this methcd for hard sphere~
hard ellipsoid interactions are summarized ia Fig. 4.2.

Here; the kinematic parameters are appropriate to an Az:-co2
system. Of the potential parameters, the sphere radius, Y
and ellipsoid semimajor axis, b, are held fixed with values
of 1.91 & (3.6 bohrs) and 4.23 8 (8.0 bchrs), respectively,
and the semiminor axis, a, is allowed to vary from 1.59 2
(3.0 bohrs) up to b. The collision frequency is evaluated as

a function of impact parameter and ellipsoid eccentricity, e,

{4.5-3)

It is evident from the results appearing in Fig. 4.2 that the
chattering freguendy can become significant for moderately
eccentric ellipsoids. Figure 4.3 illustrates the definition
of the hard sphere-hard ellipsoid potential parameters.

To assess the systematic error inheremnt in the

"projection" operator technique applicable to the evaluation
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Fig. 4.3. Geometry of am Ellipsoid of Revolution
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of hard ellipsoid~-hard sphere effective collision cross sec-
tions, Monte Carlo estimates of a selected few of these crcss
sections have been obtained. Again, Ar-CO2 kinematics is
assumed and r, and b are held comstant at 1.91 A and 4.23 3,
respectively. A summary of results based on 10,000
trajectories is given in Tables 4.1, 4.2, and 4.3, and Figs.
4.4, 4.5, 4.6, and 4.7. 1In each case Monte Carlo estimates
are compared with values obtained via Egs. (4.3-26),
(4.3-27), and (4.3-28). In the plots, Monte Carlo estimates
(isolated points with appropriate error bars) and
"projection" operator results (solid curves) are given versus
eccentricity. Deviates which are significantly greater than
the expected random erzor become apparent at an aprroximate
value of e = 0.55. If one defines R = bra, this value of e
corresponds to an R of about 5.2. Finally, as expected,
chattering has a greater effect on cross sections which have
no spherical contribution.

It has been found by Cooper, Hoffman, Matzen and
Verlin(33) that typical values of R appropriate to the calcu-
lation of transport coefficients for hard ellipsoidal models
of first row diatomics range from approximately 1.1 to 1.3.
Thus, the use of the effective collisicn cross sections for
hard ellipsoid-hard srhere potentials as a control variate is
marginal at best when applied to the estimation of realistic

Ar-Nz cross sections and is unwarranted when applied to the
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Table 4.1. Hard Sphere-Hard Ellipsoida Effective Cross
Sections: Comparison of Monte Carlo Estimates
and Projection Operator Results

Cross donte Carlo Projectioa Perceat
SectionD Estimate® Operator Result Deviation
1000 ’ )
G(,ooolB af 36.5(1.8) 32.9 -9.6
1100
(1100154 31.9(3.2) 36.1 13.2
(1200
,20013 o8 , 149.5(5.1) 229.6 . 53.6
02008, ’
G(ozool 71.8(3.7) 111.6 55. 4
1000|
1200 B af
G (12008, 1.32(14.3) 0.318 ~75.9
1000 B af
1010 *
G ( %)
1200 '8 af -2.79(7.9) -8.49 204. 3

200 (8,
6(1010|

1001

I)
1200 B af - - -
1200 | 1.99 (5.6) 1.68 15.6

1001'6 aB

@ sphere radius = 1.91 }; ellipsoid semimajor axis = 4.23 R
ellipsoid semiminor axis = 2.12 A.

All cross sectiois given in angstroms syuared.

€ values in parentheses are percent relative standard
deviation.
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Table 4.1. (continued)

Cross Monte Carlo Projection Percent
Section Estimate Operator Result Deviation
61yl 3y @) . 262.8(3.2) 261. 2 -0.61
2
6(v%,0%)
2 2 -29.3(u05) -80-5 17“.7
G(R7, %) g

6 (yg:yxIa]1 (3))

G(xX[Q]( ),xg)as 16.8(11.3) 16.0 -4.8

Table 4.2. Hard Sphere-Hard Ellipsoida Effective Cross
Sections: Comparison of Monte Carlo Estimates

and Projection Operator Results

Cross Monte Caflo Projection Percent
Sectiond Estimate® Operator Result Deviation
(1000 B, .
1000‘6 B 52.3(1.6) 50.2 1.0
1100 B ' ‘
6(1100'8)a 41.5(3.5) 41.5 0.01

a gphere radius = 1.91 x; ellipsoig semimajor axis = 4.23 3;
ellipsoid semiminor axis = 3.06

P 211 cross sections given in angstrons squared.

€ values in parentheses are percent relative standard
deviation.
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(continued)

Cross

Section

Monte Carlo
Estimate

Projection
Cperator Result Deviation

Percent

G(

G (

G(
G(

G(

G(

G(
G (

eyl P51y 2y

6(xeixxia1?h) o
6 (yxta1 ¥ zya) o

1200'B7aB

0200|B)
0200'B‘aB

1000|B)

1200 'B’aB
12OOIB)
1000'B’aB

IOTOIB)
1200 'B‘ aB
IZOOIB)
1010 'B’aB

1001‘3)

1200 'B’aB
1200|B)
1001 '8 aB

6(v2,02)
c@?,v?),

B
8

145.8(4.7)

61.1(2.6)

0.743(30.2)

-3.59(7.2)

~7.73(2.5)

357.7(2.7)

=50.3(3.7)

23.2(16.4)

170.4

71.3 .

0.204

~5.32

~7.20

361.9

-68.5

21.6

16.9

16.7

-72.5

-6.80

1.2

36.2

6.9
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Table 4.3. Hard Sphere-Hard Ellipsoida Effective Cross
Sections: Comparison of Monte Carlo Estimates
and Projection Operator Results

Cross Monte Carlo Projection Percent
Sectionb Estimate® oOperator Result Daviation
1000
1000'3 B 69.4(1.5) 71.3 2.7
1100
”00|,5 B 67.9(3.2) 70.0 3.1
1200 5
0200 B 4,34 (3.4 4,47 3.0
6(0200!8) as (3-4) )
1000|B
1200 B aB .

IZOOI 0.586(32.8) 0.259 -55.8
(1000 8)as
lolOIB
1200 : .
1200' 0.379(29.7) -0.271 28.5
Go10'8%a8

a4 gphere radius = 1.91 &; ellipsoid semimajor axis = 4.23 };
ellipsoid semiminor axis = 4.02 f.

b All cross sections givemn in angstroms squared.

c

Values in parentheses are percent relative standard
deviation.
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Table 4.3. (continued)

Cross Monte Carlo Projection Percent
Section Estimate Operator Result Deviation
1001
G( 1)
12008 a8 =1.69(21.6) -1.18 ~30.2
l200| )
IOOI B’ aB .
G‘[l](Z)i[ll(Z))as 436.9(3.0) 452.7 3.6
6(v2,9%) g
2 -4.,96 (4.0) -5.08 2.4
G(Q ) oB

6 (1871 (8] (2, a8

G(Ix[Q]( )’I_)mB 7.25(6. 4) 7.66 5.7
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estimation of realistic Ar-C02 and He-CO2 cross sections
since such a procedure would likely introduce systematic
errors which are larger than the random errors inhereant in
Monte Carlo integration.

In contrast, the effective cross sections obtained from
a Lennard~Jones 6-12 potential can be used as contrel
variates since the Curtis-Clenshaw quadrature technigues of
O'Hara and sSmith(53) can be used to evaluate them acburately.
Optimum values of the two lLennard-Jones force constants, ¢
and 0, appropriate to the control variate can be found by
treating the expected error estimate as a function of the
force constants. The optimum values occur when the expected
error estimate is simulaneously minimized in both € and o.
This procedure is illustrated by Fig. 4.8. It is generally
found that the optimal values of the force constants are ob-
tained when the difference between the primary Monte Carlo
estimate and the ccntrcl variate is at (or very near) a mini-
mum. This does not come as a great surprise since Eq.
(4.5-1) shows that Sg(G') is comprised primarily of an exact

result, I plus a small Monte Carlo correction.

Gll
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2 |
S
4.0 4+
3.0 + 003
2.0 0.02
e(eV)
1.0 ¢+ ! 0.01
0.0 + 4 } e 0.00
0 2 4 6 8 10
o (bohr)

Fig. 4.8. Variance of the Monte Carlo-Control Variate Esti-~
mates of {y;y} as a Function of Lennard-dJones

Force Constants
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4.6. Realistic Anisotropic Potentials in Quaatum Mechanics

The quantum mechanical expressions for the scalar
collision integrals and phenomenological cross sections can
be obtained using the expression for the Waldmann-Snider
collision kernel which appears in Egqg. (2.2-48). In this ex-
pression, the internal state quantum numkers are denoted

collectively as g, and g,. Within the Born-Oppenheimer and

1 2

rigid rotor approximations, the only internal state quantunm
numbers for an atom-diatom system are j and m where
\ﬁffTizTTﬁ is the rotational angular momentum and BAm is the
component of rotational angular momentum along a space-fixed

quantization axis. Thus, the collision kernel can be written

as follows,

mefj l IJf“‘fj; is _
By/By Ry /By
© jm j'm.-[- 'lmlva
gh®fap, << L £[7i} Ise“r “@1! 13 ss  (4.6-1)

Biz2\ By
¢ (&;+B,"B{ "B

Here, the "prime" denotes precollisional quantities and

"unprime" denotes postcollisional qguantities. The subscripts
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“i" and "f" are conventionally defined as by Ben-Reuven ard
other workers(57,58) and denote initial and final states of
spectroscopic transitions which occur during a collision.
(Obviously, if jimi = jfmf and jimi = j%m% no transition
takes place.) Such notation is appropriate to the descrip-
tion of dilute gas interacting with a radiation field (e.g.
pressure broadening of spectral lines). Although radiation
fields are not considered in the usual description of gas
transport phenomena, the "i" and "f" provide a convenient
means of keeping track of indices.

The scalar collision integrals are defined as follows,

2.

-3/2| %

{VreV } 0w = ﬁz[znpv kT] / T . Z ] Z ]dlfdl'
ML Y Igmy Jels

_Y'Z

e exp(-J (3{+1))<3;m; v ol 3gme> (4.6-2)

1'

Hére, W; and Tn, are tensor functions of y and §.

3j j.m "m jim!|+ '
f £ - =t 7 ivi et 1T 1 ten s
<< ( 19 |7e7-5@8 | ¥ ( ) »<3%'“f”n|3imi>

It follows frcm Eq. (3.6-44) that {V'QV } can be
vi'n'v,w

written as follows,

(Ve } ) If K e
\le = C [ ' '
n Vi [M] K Kzin Q="K K£K M
[M*] v e
KL'Kj
K K' K
Z' t' -
{[¢“ ] ,[¢“. ]Q}v,w (4.6-3)
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KzK M
Ml

<2 KgoK ()

in Eq. (3.6- u5) and [o, f] is equivalent to [® ]Q

Here, CK[ ] is a scalar coefficient of the type defined
defined by Eq. (3.6-42) for whlch gEKZ' gEKj, and M={j,t}.
The sum over [M] is defined,

eee = Z * ® e (q.6-u)

[M] uvwkl
vhich is equivalent to Eg. (3.6-46) with the sum over g (i.e.
Kz) left out. Thus, in order to construct the effective
collision cross sections appropriate to the evaluatioa of the
transport coefficients, one must evaluate scalar collision
integrals of the forn,
KooKj KpoKY K o ~3/2 (0] 2
{{e, ] 11 = h [ZWquk'I‘] T

et
Q M va

-y 2 0 ] )
I 1 Jay,fay Jayifay: eTVi“exp (=3 (3]+1)

I3l Jgle
Jimi Jgls
j.m, ,K. K+ 3 PP I TR P jimf) +
Fi "l[o £ 1] Iehe e Ilm-ses*l R >
vg oM e Ye \ X5 ) | Le \ L
K) K K 3
g fl L
< i (4.6-5
oyt 1y | )

Here, the matrix elements are given in terms of a dimension-

less plane wave representation.
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It is advantageous to convert the expression in terms of
plane wave states appearing as Eg. (4.6-5) to one in terms of
spherical waves. This can be accomplished by using the stan-

dard plane wave expansion,

. ) £ ,
ik-r L. TP VL A _
et="= = 4n] [ i%j,(kr)Y ()Y, (k) (4.6-6)
£=0 y=—t % £

Here, jz(x) is a spherical Bessel function of order, f. If
one assumes a Dirac delta function normalization for continu-
ously indexed state vectors, Eq. (4.6~-6) can be written with-

out as follows,

oo 2
k> = ¥ ) ilk-lYE*(E)|k£u> (4.6~7)
£=0 p=-{

Here, a phase convention for spherical wave states which
gives rise to symmetric S-matrix elements as defined by
Arthurs and Dalgarno(59) has been adopted. For the sake of
completeness, one notes that Egs. (4.6-6) and (4.6-7) are re-

lated by the identities,

<z|k> = 2n3/2.1k°x (4.6=-8)
<z|ktw> = [21%], (kr)Y) (£) (4-6-9)

Equation (4.6-7) yields the expression,

» . had L * ~ ..
my o (2RI GRS (seem10)
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where one notes that the dimensionless relative linear momen-

L
tum, Y equals ﬁk/[ZuaBkT]2 and the relative translational

kinetic energy, E equals kTyZ. If one substitutes Eq.

(4.6-10) into Eg. (4.6-5), one obtains an exgression in terns
of an uncoupled transiational energy-spherical wave regresen-
tation as follows,

) [ ]
Kz,Kj K KL’K' K

-] -] [ ]

n[2mu kT =% (T D) de de ]dE jaE'
Jimy mef Liuy Leugl
Jimi Jgt¢ z;“ Levng

K. K+ j
Res j £™f
IE >

] 9 L] l l
exp (~E}/kT) exp -——J (5'+1) <E Lo |[¢

Leug
jem J.me Yt s Jemg [ Jim: )t
<<g f ﬁ e z_i | ex-ses*lE.g.f, E'Z il>
£ eHE\PitiHy gheve \Bibivg
jim K),K! K jim! (4.6=11)
<E! f f'|[° v j]QIE 2 ; >
fuf ititi

The irreducible tensor operators are explicitly diagomnal in
the relative translational kinetic energy.

The matrix elements of the irreducible tensor operators
can be written in terms of standard spherical components

using Eg. (4.6-8). One obtains an expression in which con-
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tributions from rotational and translational moticn are
neatly separated. Thus, the irreducible teasor matrix ele-

ments have the explicit forn,

JgMe

I KL’K. K j.m. Kz—K '+Q
[0
Eplehe

g i"iy o -1 I (2k+1) %
, ]QIEi’-i“i 0 ZQ_( ) (2K+1)
£%4 (4.6-12)

<

. . . l& . . t K . |
22 z; _K <Ef£fuflv3lle:Eiziui><mef|sé )(ﬁz’[gloj‘31m1>
2 9 - 2

As a consequence of the Wigner-Eckart theorem(60) , the temsor
operator matrix elements appearing on the right hand side of

Eq. (4.6-12) have a simple geometrical dependence on magnetic
quantum numbers, m., m., u, and u.. If the matrix element of

. K i £ i £
Yj[y]Q2 is expressed in a relative mcmentur representa-
Y /
tion, it can te evaluated directly. One obtains the result,

5 Ky KR, +153
<Ecloucly lllelEiliui> = (Eg/kT)

L.=L

£ et e R i e %y

N(K,)i b -ugp Qg0 0 0

(4.6-13)

%m‘*[(zzi+1)(2Lf+1)(zxz+1)1*s(ni-gf)

The scalar quantity, N(Ke), comes from the defimition of
standard spherical tensor components in terms of spherical
harmonics. (This definition appears explicitly as Eq. (8-9)

in Appendix A.) It has the fornm,
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1K, ! (K +1)!2K£ 3
N(K,) = 23/2[__£%§§f1771__-4 (4.6-14)
It follows directly frcm the Wigner~Eckart theorem that a
matrix element of Sét)(ﬁz)[ﬁ]zf can be written in terms of a
standard reduced matrix element which is independent of mag-
netic quantum numbers. If "reduced" or "double-bar" matrix

elements are defined as by Edmonds(60), one obtains the ex-

pression,

K, | . 1K;)
. (t) &2 i1 = (t) (52 L AT
<jgme|s 7 (@ )[Qleljimi> Gellsg™ @y 715>

s . DK (4.6-15)

(-1) £ (i Jg By
m, ~mg Qj
The reduced tensor operator matrix elements,
<fl|$ét)(ﬁz)[g](Kj)||m> are scalar quantities.

The scalar collision integrals can ke formulated in
terms of the rotationally invariant Arthurs and Dalgarmo S-
matrix elements if the tetradic matrix element of 787-8887 is
written in an appropriate totally coupled tasis. If one uses
the coupling scheme given by Ben-Reuven(57), one obtains ex-

pressions for the fcllowing rotational and translational

basis vectors,
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- J.+K,~m 5.5 K.
lJfJi,ijj>> = 7 (-1 T g ey _31 Jg Xy
mime J m; me ‘Qj

(4.6-16)

|jfﬁf><jimi|

L2.+K,~u
Bt (20 ik0>> = f (- ETE

3
(2K.+1)
272 , i

Liuf

(4.6-17)

Zi £f KZ

-y g _Q[_|Ef£fuf><E.£.u.|

1121

One notes here that these couplings can be summarized
vectorially as jf - ii = §£ and gf -4, = Ei' The basis

vectors defined by Egs. (4.6-16) and (4.6-17) can be further

combined in order to form a totally coupled basis as follous,

X .~K ,+Q
T oa st Ty . D PR B 4 -
K: K, K
1 i e 4 . S +.
(2K+1) Qj . -Q) ljfji,thj>>|Ef£f(Ei£i) .K£Q£}>
The coupling can be summarized vectorially as K, + Kj = K.

This "K-K" basis set defined by Egq. (4.6-18), does not
provide a convenient basis in which to construct rotationally
invariant quantities. It is, howevér, related by a unitary
transformation to a totally coupled basis set which does pro-

vide a suitable basis. This "J-J" basis set can be con-
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structed according to the following vector coupling schene,

if + &f = des ji + £i =dije dg - d; = K. The unitary trans-

formation relating the K-K basis set to the J-J basis set can

be written in terms of the Wigner 9-3j symbols as follows,

1' (] L] *. -
|BLB (3p8p) T [(5;£,)T,T KO = . ZK [(23.41) (23,+1)
i~2
J. 2, 3 (4.6-19)
(2K +1) 2K+ 1550 £ o\ et (537K ., (eehix ;x>
§ 2 R B DAL o UARFF R A 4o RV &
Kj Kl K

In terms of the J-J basis, the tetradic matrix element of
.i.

1®1-S85"' has the particularly simple form,

'u.'r : 3 1'. kY-
<RELE;» (Jele)Te, [(5,£)3,175K0|70

- Sof | EzEy, (500 3L, 1G5 1e 3R> =
, . (4.6=20)
Sxrt00010515 831y [84rs Sivs Spyp 8

KK''QQ'"Tid, "Tede " "3i3; Igde £i8; Lils -

Jf J.*

S, cipy 8it, L p, V8 (E,-E!
P R NN A

Here, Ei and Ei represent the total energies (translational

plus rotational) of the system in states "i" and "i'", and
J J L]

jfz sap and S.lt L1gy are S-matrix elements as defined by
£eiIets Ji%idi%i ) +

Arthurs and Dalgarno. The superoperator, 197-5835

S
is diago-
nal in K, Q, Ji, and J_ due to the overall rotational

£
invariance of physical systems. The enérgy diagonality comes



192

from the "hatted" operators and has been thoroughly discussed
previously.

Equation (4.6-11) can be written in terms of a
generalized phenomenological cross section by using Egs.
(4.6-12), (4.6-13), (4.6-14), and (4.6-15) to simplify the
trial tensor function-operators in terms of scalar reduced
tensor operator matrix elements and Wigner 3-j symbols. This
is followed by use of Egs. (4.6-16), (4.6-17), (4.6-18) and
(4.6-19) in order to transform the uncoupled basis appearing
in Eq. (4.6-11) to a totally coupled one. Use of Eqg.

(4.6-20) allows the evaluation of the tetradic matrix element

as discussed in the last paragraph and results in the final

expression,
K,+K)+2
'K L’ - 8kT 3 2 _
(K (4.6-21)
I 1 eXP(-—- sHIGHINPES IIS(t)(ﬁ2 ) [8) § 13
i Jl JfJf '
1] - ot - |2 |+3 ‘CK. Ké '
<iplls{F @) 113> fayre™ 1 #E of Sl Jj(K EJE})
0 £ £
. £ B0
Here, y' is defined aseET, and thus y = T " TF'Ji(Ji+1) where

E' is defined as B+ ?Tji(ji+])' The integers s and s' are

defined as j+K_, and j'*Ké respectively. (j and j' are

L
indices appropriate to the basis and should not be confused

with angular momentum quantum numbers.) The generalized
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phenomenological cross section which is independent of Q, is

defined as follows,

3 Jf'3l iJf '2 Libetits
“i J.J
i~ f

A L] ] }i
(2Ji+1)(ZJf+1)[(2Li+1)(2£f+1)(2£i+1)(2£f+1)]

by ke Ky (2] 24 K} Jg £¢ g Le Jg (4. 6-22)
LN | [ ] [ ]

o 0 o/ lo o o ;% i? i? Ki ii if
i Xp i ¥

J J *
AT TE I 13 T A Sjizf'j'l'(s S5 iti "i(Ei)]
The partial wavenunber, Ki is defined as [2p BE /n] The
Arthurs and Dalgarno S-matrix elements are evaluated at total
energies of E% and E%.

For the sake of completeness, it should be noted that
the generalized phenomenological cross section as defined by
Eq. (4.6-22) has a wider application than the evaluation of
transport coefficients as is proposed in this work, im par-
ticular, to the description of collisionally induced
.radiative processes. (Pressure broadening of spectroscopic
line shapes is a good example(57).) As mentioned previously,
the effects of a radiation field are not considered in the
usual description of gas transport phencmena. 1In this case

the "i" and "f" subscripts are ignored.
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The generalized phenomenological cross section exhibits

the following symmetry relationms,

éK}’Kz j )
(K'Ef,ci) =
k! 2 +K! K, K.;K}K!
= (~1) A B LIk, EL/E)) (4.6-23)
Ki P Jf'J Jf

o AT EL,E]) =

j3dgrilit |
K! 2 K.+K,+K'+K! K.;K)Ki*
Y A A A B A o P T TOR T AP
£ 13gi3iis i

These relations are obtained by using parity, the symmetric
nature of the Arthurs and Dalgarno S-matrix, amd certain
properties of the Wigner 3-j symbols. Further inspection

shows that if ji = and ji = j! as for the construction of

g £

transport coefficients, then K nust be even or the Cross

2*%p
section vanishes. Furthermore, for this case, it Kj+K} is
odd, the cross section is imaginary and if Kj+K; is even, it
is real. 1If ji # jf and ji # j%, then the cross section can
ke complex. |

The scalar collision integral defined by Eq. (4.6-21)
can be written in terms of a "Q" cross section which is anal-~

ogous to the classical expression given by Eq. (4.4-11). One

obtains the result,
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K K K K! © 2

L’ £’ { = KT % =Y 8 +8+3

trey™ J1g. 1047 71 ) - i [ay'e™ " vy
j ! .3 4.6-25)

2 6p or ..., (23i+1)  (xy Kp K3 M
T L, el 3O g 7 gy ki W

3334 £ 7y

Jedg

If one compares this expression to Eq. (4.6-21) cae can
define the Q cross section in tarms of the generalized

phenomenological cross section as follows,

K i M K£+Ké

(K) 2
( , () = 16K 'K [T—_—T-T§_~T_
EK M L ZKZ [} L

1 (2K+1)
123i+19

_ (K. "W .o (KY) (4.6-26)

<glls{ @by Iij><jglls;? Y@dhm e

.KlK' :
I (K, E;/E;
( ) J Jf:] Jf( )

This expression is a direct gemeralization of the cross sec-

tion, Q(K).

It is possible to obtain the spherical limit of the
generalized phenomenolcgical cross section if one notes that
the S-matrix elements can be written in terms of a phase

shift as follows,

J

Sf

g l'(E ) = 6., 6£'£ exp[-2;n£f] (4.6-27)

¢ Jgde Lits

£ Jf

Substitution of this expression into Eq. (4.6-22) yields the
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result,
K.;K'K*
ey L4, EL/ED) = 6, S Oxix —=
33 :’f':l Jf ' 13 fJf LRt i A Ky

(4.6-28)
2

[1 - eXP[Zi(nl.-nzf)]
1

(2£i+1)(fff+1) Li £f KZ
£f IEKJ+1)(2K£+1) 0 0 O

For the cross sections appropriate to transport phenomena,

the "i" and "“f" subscripts can be ignored which results in

the expression,

K.:K}
£ £ j T
0.5, (K,EL,E!) = 8.1.86 8 —
J J' 33 A J I KK KKy Kiz
” (4.6-29)
(2£;+1) (2£.+1) zf K, L.
0

I 1 1l [sin(n, - n, )12
Li ‘Cf>£i (ZK'{"") (2K£+1) 0 0 li £f

Clearly, the cross section is exclusively real valued in this

case.

4.7. Approximate Quantum Mechanical Generalized

Phenomenclogical Cross Sections

Recent work has resulted in some very useful gquantal ap-
proximations for use in treating rotational excitation in
atom-molecule collisions(31,32). Of these, the coupled

states (CS) and infinite order sudden (I0S) seem to hold the
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most promise for application to transport phenomena. This is
because I0S and CS cross sections can be computed reascnably
fast (as compared to close couplimg (CC) cross sections) but
yet compare well with accurate CC or classical trajectory
(CT) cross sections.

Briefly, all sudden approximations arise by the applica-
tion of a suiiable angular momentum decoupling assumption to
the set of coupled, exact quantum dynamical eguations de-
scribing atom-molecule collisjon dynamics. Such decoufpling
represents a great simplification because it reduces the
large number of coupled equations which arise for even
nodestly energetic collisions.

One obtains tke CS approximation by replacing the orbit-
al angular momentum operator appearing in the centrifugal po-
tential of the atom-molecule Schrodinger eguation by an aver-
age orbital angular momentum eigenvalue. The validity of
this approximation is related to the rate of change of the
classical turning point with respect to orbital angular mo-
mentum. This can ke seen if cone recalls that the underlying
assumption of the CS approximation is that the relative
kinetic energy is sufficiently large so that the precise
value of the centrifugal potential is unimportant. (i.e€.,
just the case for which the rate of change of the classical
turning point with respect to angular momentum tends to

become small.) Indeed, it is found that the CS approximation
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is quite good for steep, repulsive single turning poiat
regions of an interaction potential, but should be considered
suspect in the three turning point region for potentials with
wells.

The IOS approximation is a further approximation of the
CS approximation. It is valid in tne case that both the
centrifugal potential and the rotational kinetic energy are
unimportant when ccmpared to the relative kinetic energy.
Further discussion of the sudden approximations and other ap-
proximation techniques is‘beyond the scope of this work. For
a more complete discussion of approximate guantum m2chanical
scattering techniques the reader is referred to the work of
Kouri (61). The results of this work will be used to simplify
the generalized phenomenological cross section appearing in
the last section.

The generalized phenomenological cross section given in
Eq. (4.6-22) can be readily converted to its CS form by stan-
dard techniques. The first step in this conversion requires
substituting the CS expression for the Arthurs-Dalgarno S-

matrix into Eq. (4.7-1),

J 2F _-£_~2! -
f = s £ TEfTE %
S."p .s =i [(22_+1) (2£2+
Jeleiigls Alf £¥1) (22241))
JA jl J Y J J (4.7-1)
£ °f Yr £ “f) g (G190
0 Agp =X, 0 Ap -2 fof £7f
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Here, Zf can be chosen to be any function of £f and 2%‘
{However, to preserve time reversal symmetry If should be
symmetric in £f and 2%.) The phase convention used here has
been shown to be correct by Khare(ézj. This convention gives
the proper behavior for degeneracy-averaged differential
Cross sections. If one expresses the Wigner 9-j symbols in

Eq. (4.6~22) in terms of Wigner 6-3j symbols using the follow-

ing relation,

(4.7-2)

(-1) 28 (254+1) : .
S . Ky K S j; S Jit ]S Jg 2

£
and recombines appropriate pairs of 3-j and 6~j symbols ac-

cording to the relation,

+J.+S+ J. S
i = Z (_I)K Jl Wits Y3
0 A, =2 S jf £f MU 0 By “Hg

(4.7-3)

one is able to sum over Jf. The Secrest labeling schenme,

i - - i ; l 1y =
(i.e., the so-called "L-average" labeling T 2(£i+£i)_— Lav)



200

results in the following expression for the generalized

phenomenological cross section evaluated within the CS ap-

proximation.
K,K.;K!K! Ki+Sts!
le! v o pey . T Z- £
%5353 KB ED = =7 ss0 0 (25+1) (25'+1)
h
Ig 33 %j {35 31 K oo 1)£E+£i+zi'zf
Kp K 8 ()K) K S'| L. LE L2
Ji

(2Ji+1)(2£i+1)(2£f+1)(2£i+l)(2££+1)

gy Kpl (£ 25 Ryl ) £. &5 Kyl J£1 £] K;
J Jy

(6 8 (4.7=-4)

*

s Oy = S+ j.[3L)S j. 13!
FEPFTE e W EEE L AT AL
From a computational viewpoint, this expression doces not
appear to hold any great advantage over calculaticn of S-

matrix elements using Eq. (4.7-1) follcwed by direct substi-

tution into Eq. (4.6-22).
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z

If instead of choosing L-average labeling, one chooses
£

= Zi and Z} = ti (this is termed the "L-initial" lakeling
scheme), considerable simplification results.

By
appropriately applying expression similar to Eq.

(4.7=-3) and
(4.7-4), the summations over £, tf, ds, 8 and g' can be

performed and the much simpler form of the generalized
phenomenological cross section,

<K . ] []
szj,xzx}. e I ji+ji+Kj+K}.+K£
O o .-|-|(KIEfIE-) - 2 £|£|("‘1)
JiI£idide 1 k1€ Citf
i Aikf
2 . .
£| Ll Kl :]' j K- j' Jl Kl
(2e3+1) 22+ \'f o£ G 1 N L
i “f "1 °f i " "1 "¢
K K, KJ. K KE K'J.
(4.7-5)
[(6.,. 6.,. =8 (Gelit)st,. (5:13N]
3135 dgde  TEEAg CEETTE4R; UATIA

is obtained.

It should be noted that had Z& = £, and Z& = £

£
(L.e., the "L-final" labesling scheme) been chosen, an expres-

and £f would result.

These two expressions are the same only
if K, and K! are equal.
2 2 g

sion analogous to Eq. (4.7-5) with ti and ﬂé replaced Ly Li

The CS expression given in Eq. (4.7-4) for "lL-average"
labeling can be reduced easily to the corresponding IOS ex-

pression by noting that the I0OS approximation to S£ Af(jfljf)
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is given by the following expression,

. ' L
513 A % (9f 3¢ Lf
s Gelid) = I (=07E1(2; +1)(2,'+1)]
Ehe 7278~y Jg 0 Cig 0 0 0
(4.7-6)
3¢ Ip L) Fe
Af -Af 0 Le
zf
Here, SL is the L.th Legendre polynomial expansion coeffi-
£ ,

cient of the S-matix for the fixed-angle uncoupled radial
equation having orbital parameter, Zf. If one substitutes
Eq. (4.7-6) and its eguivalent form for Sziki(jilji) followed
by appropriate recombinations of 3-j and 6-j symbols using
expressions similar to Eg. (4.7-3), one is able to perforn
the summations over Ji, S, and S' which appear in Ey.

(4.7-4). The resﬁlting I0S form of the generalized

phenomenological cross section is,

K,K.;K!K* P'HA+L '+K 4K
o  l tdmELEn = Iy T 1) i
Jidgidids k1% upian

. . . . B[If Ty Ji
[(zji"'l) (zjf"']) (zji"") (2:]%"'1)] ~U A+u' p=p'=A
. (4.7-7)

Jé K" JJ'_ Kz K K KL! K! K
-4 A'Hp' pept=2 PR T T B DL R TR T

5 g 3 Te) | Fi 35 By [ g g L
LiLf 0 0 O 0 0 O u -p 0
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" 3 L. L.+L 2.-L:+L.-T
A —wt pmntenmr ) D £y et s
' £i£f
¥ | ]
lizf
Kp ¢

£.+1) (20.41) (28141) (280+1) 1% s
[(2&;+1) (22, 4 £ 0 0 0

i 7f i i i™i i"e”7f
0 0 O 0 0 O A =A'" A=A A -2 0
*
ti % Lz (6. 6. - szf szi]
[ |
A A' O LiO LfO Lf Li

This expression simplifies further only for special choices
of Kj, K;, kl' and Ké. As with the "L-average" CS expres-
sion, it would appear that this expression affords little if
any improvement over numerical evaluation of the generalized
phenomenological cross section via calculation of the
S-matrix elements using Egs. (4.7-6) and (4.7-1) followed by
direct substitution into Eq. (4.6-22). In fact, it was found
by this worker that in practice, the indirect method is
actually more efficient from a computatiomal viewpoint than a
direct numerical evaluation of Eq. (4.7-7).

Considerable simplification of Eq. (4.7-7) results if
instead of an "L-average" labeling, one chooses and "L-
initial" labeling (i.e., Zi = £} and Zf = 2L The summa-

tions over Li and zf can be performed which results im the

following IOS expression for the generalized phenomenological
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cross section,

K,K.;K!K" A +A 4Ry 4T !
o .t Ak ELED = T AZ)\ (-1 + % ot
Jj3gidjle k!4 Aile
1 . N
[(25.41) (29.+1) (25041) (25141) 1% s e
3. 3 - - -
Jf i £ i A A AgAg
BN ' K.
ji I K_{ K K2 X j)\
Ay Ag AgAgl\Agmry 0 Aj7Ag
K K K 3i 35 Ly) {3 I Lg
Ag=A; 0 A;SAlf 1.;Llo 0 0 0 0 0 (4.7-8)
IR 3 | . Lr+L!
3§ 3gDg| (31 1 By z'zz'('” £ 7320 g41) (22044+1)
Ag Ag Of\=Ag Ay O 2L
2 [ vk
i7e *f 8 - S.°8 ]
o o o] Brf0” "LlL,

As was the case with the CS "L-initial" expression, an analo-
gous expression for "L-final" labeling can be derived which
has the same form as the expression given above except that
zi and ﬂ% are replaced by Zi andlf respectively and Ké in

the last 3-j symbol is replaced by K It should be noted

z.
that the IOS "L-initial" and "L-final” expressions are equal

is equal to K!. The transport coefficient cross

only if K 7

2

sections for which j§, = and 3§' = 4! also do not simplify
Ii 3 Jg

further(63).
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5. NUMERICAL RESULTIS
S<1. Introduction

As an introduction to the numerical results obtained by
use of the preceding theory, a short, qualitative discussion
of the Senftleben-Beenakker effects is given. This is fol-
lowed by a discussion of the convergence of the perturbation
expansion in the nonsphericity parameter and finally a summa-
ry of the numerical results is to be presented.

The Senftleben-Beenakker effects on the thermal
conductivity, Soret, Dufour, and diffusion coefficients are
quantitatively characterized by parallel, perpendicular, and
transverse compoaents as shown in Eq. (3.3-16). In the low
field limit, the parallél and perpendicular components are
equal. Conversely, in the high field limit, saturation
occurs with the parallel and perpendicular components ap-
proaching different limiting values. The transverse compo-
nent vanishes in both high and low field limits. It reaches
~a maximum value at an intermediate field strength for which
molecular precession and collision frequencies are of the
same order of magnitude. If one allows T to represent any
one of the above-mentiomned tramsport coefficient;, one can

define the following dimensionless parameters,

v _ _T1-To

1 0



207

T Tp~Ty
vy = s (5.1-2)
7S} p
1 “To
T £
(T (5-1-3)
T =T

Here, the scalar coefficients, Ti, T", and Ttr' are

defined as in Eq. (3.3-16). The quantity, T(s), is the
1

saturation limit of Tl, and T, is given by,

0
T. = 1lim T, = 1lim T (5.1-4)
0 Hyo L o !
T

where H is the magnetic field strength. The quantities Vv

T T
Ve and vtr

hydrostatic pressure) and can be plotted versus this quantity

J.'

are universal functions of H/P (P is the

as is shown in Fig 5.1. This plot is representative of the
Senftleben-Beenakker effects observable in a dilute atom-
diatcom mixture.

If one includes only the dominant g[g](z) polarization
in the expansion set used to coanstruct the collision opera-
tor, then one finds that the saturation limit of vT is 2/3.

(vI has been defined such that it has a saturation limit of

unity.) Under the same conditions, one finds that vzr reach-
es a maximum of 0.4750f9 at a critical value of the magnetic

field strength, H

orit The value of Hcrit/P in an atom-



oI
=) 1
o,

o

a oI
o I
a-

d-

o T
=] \ Vir
Q™ T T i T T TTIT7 1

1x1073
E12

Fig. 5.1. sSenftleben-Beenakker Effects Characteristic of a Dilute Atom-Diaton
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diatom mixture which is infinitely dilute in the diatomic

species is given by the formula,

H 2 n L3
§pr1t = Sorit v G(1200|B) (5.1-5)
gBuNkT aB” "1200'B'aB

where = is the diatom rotational g-factor and Uy is the nu-

clear magneton. The constant, £ is a dimensionless num-

crit’
ber which to six decimal places has a value of 0.€15795. 1In
the case of systems considered in this work, the inclusion of
WQ andsor other polarizations changes the breceding values at
most by only a few percent.

In order to assess the rate of convergence of the
nonsphericity perturbkation expansion, the collision operator
was directly inverted. This result was compared to the first
few low order (up to fifth) results obtained using the
perturbation approach. The perpendicular component of the

thermal diffusion coefficient for am Ac~ CO, system at 300°K

2
is plotted versus g12 in Fig. 5.2. The parallel and trans-
verse components exhibit similar behavior. As can be seen,
there is a significant deviation in second 6rder which is
narkedly improved in third order. <Curves for orders higher
than third are indistinguishable from the exact inversion.

It should be noted that the Ar-CO_, system at 300°K is given

2
here because it involves the most anisotropic interaction

dealt with in this work. In contrast, if one considers an
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Ar-N, systen (i.e., the least anisotropic interaction inves-
tigated) , one finds that even the second order results do not
differ significantly from exact results.

In Chapter 3, expressions for various transport coeffi-
cients of interest are given in terms of effective collision
cross sections. Thus, comparison of the various theoretical
approaches taken in this work with each other and with exper-
iment is conveniently made in terms of these cross sections
themnselves rather tham in terms of actual transport coeffi-
cients. Furthermore, the effective cross sections are
expressed in Chapter 4 as averages of energy dependent
phenomenological cross sections over a Maxwellian energy dis-
tribution. Comparison of the unaveraged phenomenological
cross sections obtained from the various methods is thus an
even more rigorous test of the efficacy of the theoretical
approaches developed in the preceding chapters.

The remainder of this chapter consists of five sections.
The first is a presentation of results obtained for some
specific model systems using the techniques of Chapter 4.

The second is a comparative discussion of various numerical
values of generalized phenomenological cross sections. The
third section is a comparative discussion of various numeri-
cal values of effective collision cross sections. The fourth
section is a presentation and discussion of results obtained

using the Kihara model methods previously employed by Verlin
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et al.(64) and the last section is a brief survey or future

areas of study related to the present work.

5.2. A Presentation of Monte Carlo and I0S Results

The Moate Carlo methodology was applied to four specific
molacular potential eanergy surfaces. These included two dif-
ferent Ar-C02 interactions due to Parker, Snow and Pack(65)
(denoted by I and II), an He—C02 interaction due to the sanme

authors, and an Ac-N_ potential surface due to Pattsngill, La

2
Budde, Bernstein, and Curtiss(66). The Ar-C0,(I) surface and

2

the He-CO_ surface were employed in the calculation of effec-
tive cross sections for these systems at 300°, 900°, amnd 1800

K. The Ar-COz(II) surface was used to calculate effective
cross sections at 300°K only (for comparison with the Ar-Co,
(I) results). Finally, the Ar-Ny surface was employ=d to
calculate effective cross sections at 300°K and
phenomenological (energy-depeadent) cross sections at three
different initial relative translational energies (0.00500
eV, 0.02585 eV, and 0.05000 eV) and a single initial
rotational energy (0.0105 eV). The rotational energy chosen
corresponds to a rotor quantum number of sik. The author wvas
greatly aided in this work by Dr. R. K. Preston(67), (gga.
Goldflam 2t_al. (68)), formerly of Lawrence Livermore Labora-

tory, Livermore, California, who gemnerated the original 11
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sets of classical trajectories appropriate to the 11 cases
listed above. He used a very efficient Adams-Moulton
predictor-corrector algorithm in conjunction with a CDC 7600
computer to perform the necessary integrations of.the
classical equations of motion with randomly chosen initial
conditions.

The precollisional coanditions appearing in the original
sets of classical trajectories (appropriate to the thermally
averaged cross sections) were used by the author to generate
control variate trajectory data as discussed in Chapter 4
(L.e., based on a Lennard=Jones 6-12 interaction with
optimized force constants). These trajectories vere combined
with the original trajectories (via Eq. (4.5-1)) to obtain
the values of the effective collision cross sections which
appear in Tables 5.1 and 5.2. These guantities are reported
in squared angstroms along with estimates of the relative
standard deviation (ian percent) which appear in parentheses.
These data (especially for the Ar-CO, and Ar-N, surfaces)
will be compared subseyuently to corresponding I0S aad Kihara
model results. The reader should also note that effecti#e
cross sections at 300°K are given for the two Ar-C0O, poten-
tial surfaces in the first two colummns of Takle 5.1. One can
conclude from comparison of corresponding quantities that the
Ar-Co0, (I) potential surface is more aniéotropic than the Ar-

CO, (II) potential surfaca.



Table 5.1. Monte Carlo Estimates of Effectivé Ccllision Cross Sections fcr Arecoga
Cross Section Ar-CO- (I Ar-Co2(II Ar-CO- (I Ar-CO» (I
Sogeg ™ 360841 36924 186028
1000 26.2(1.0 26.2(1.3 19.6(1.6 17.4 (1.6
G(IOOOIB)B +2(1.0) £2(1.3) £6(1.6) - .4 (1.6)
:g:gl 43.8(2.0) 44,0 (2.8) 32.6(3.5) 28.8(3.5)
oB
(1010 y
6 (o10lg) iy 45.8(2.0) 45.8(2.8) 34.1(3.5) 30.0(3.5)
:g?:| 57.2(2.6) 63.1(2.5) 36.5 (4. 0) 30.5(3.8)
1100|B of
G100 of 23.2(2.3) 23.7(2.1) 16.4(3.0) 14,4 (3.0)
G(:ggg|8 103.5(3. 4) 86.2(3.0) 61.3(4.8) 48.6(4.7
6 (0200 8 ,“B
(0200 50.5 (4. 2) 36.2(3.6) 26.2(6.6) 19.3(7.1)
1000 5 o
G(IOIOIB af
G 1010 -1113(1ou) -0o658(1.9) -1-69(20u) '1.36(2.“)
(IOOOIB oB
1000l
}gg} B af ::::>> 0.359 (2.0) -1.92(1.8) -0.120 (2.8) 0.0974(2.7)
1000|B oB
lOlOl
(o001 B -7.57(4.3) -7.84(3.0) -4,25(5.0) -3.31(4.8)
1001|
1010 B oB

4! Ccross_sections are in s%uare angstroms and the quantity in parentheses is percent

relative standard devi

i0n.

L] ¥4



Table 5.1. (continued)

Cr Secti Ar-C9o (I Ar-CO0- (II Ar-CCo (I Ar=-Ccoo(I
o8s Section 50608 M 36024 Ar56684 Y 1800287
é}?ﬁlola
1ooo| )y
Goto
(1a1o
,0101 )asg:;;7-13.0(2.0) -11.2(2.8) -10.0(3.5) " -9,01(3.5)
1010 :
61010 B)aB
1010 -7.70(3.0) -2.84(5.0) -2.31(4.8)

o -4.49(4.3
61001 B)uB (8.3)
]001l )
Go1o
1ooo| 0.558 (14.2)
(1200 B aB ;
1200
G(IOOOlB

1010

1200| 8)ag )
G(‘2°°| . j::;> 2.62(6.3)
1010

1001

IZOOIB)GB -3.13(11.0)
G(IZOOIB)

oB

0.554 (24.6)

-2.12(7.7)

-3. 52 (908)

0.614 (16.6)

-0.838(14.7)

=1.77(14.6)

0.606 (14.9)

-0.579 (18.8)

-1.79(12.8)

SLe



Table 5.2. Monte Carlo Estimates of Effective Ccllision Cross Sectiorns
for He—C02 and A:-Nza

Cross Section He-coﬁ He-CO, He-COa Ar=-N2
306° 900 °K 1600 ° 300 °%
1000
G(1ooo| 3.C8 (2. 0) 2.58(1.7) 2.27(1.7) 29.1(1.8)
G(lolol :
1010/8)4g  _ 8.25(3.6) 6.92(3.6) 6.09 (3.8) 39.7(5.9)
1010,
6 (1010 la) B 39.4(3.6) 32.6(3.6) 28.8(3.8) 34, 4(5.9)
1001
6(1001|B) B 17.8(5.8) 12.4 (3.4) 10.3(3.7) 35,0(E.6)
00
2 B
(}288|3)a8 18.3(5. 8) 13.0(3.9) 10.8(4.2) 53.8(8.6)
(0200
0200!3 0B 7.31(7.0) 4.71(7.7) 3.80(8.5) 7.12(3.7)
31000 B
”‘1010'
10108, -=0.0551 (2.5 - ,
G(IOOOIB aB -0531(2.5) 0.0453(2.5) -0.0395(2. 6) ~1.66 (3.2)
6 (1000 By - -
}33} g “B::;> =0.134(2.9) -0.153(2.4) -0.129 (2. 5) ~0.653 (2.9)
' 1oools)as '

@ (Cross_sections are in.sguared angstroms and the quantity in paremtheses is percent
relative standard deviafion.

91¢



Table 5.2. (continued)

ti He-CO He-CO, H
Cross Section 3000% B S05R2 :

1010+B .
(100118 ap -0.615(3. 8) <0.401(3.7) -0.326(3.9) -1.16 (4.9)
1001|B ::;7 ’
(1010
1010
6 (1000 B)ag -2.01(2.5) ~1.65(2.5) ~1.04 (2.6) ~0.974(3.2)
IOOOI
1010 o aB
1010
G(mml6 <1.67(3.6) -1.39(3.6) -1.21(3.8) -14.0(5.9)
1010| ),
Goto

1010 -3.32(3.8 ~2.22(3.7 -1.79(3.9 -1.02 (4.9
G(mm|8a87 (3. 8) (3.7 (3.9) (4.9)

1001|
1010 'a"aB

10000

)
:%gg B °‘B> 0.0890(18.0) 0.0661(20.2) 0.0632(18.6) 0.111(56.6)

1000|a oB

IOIOI )

1(0180 B a8> -0.281(6.9) -0.184 (8.8) -0. 148 (9.6) 0.292(44.2)
1000

1010|B

(1001

1200| )a67-o.3oe(13.2) =0.176 (19.3) -0.156(19.1) 0.0264 (1400,)

G(

1200l
1001 ﬁ o1

LLz
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The three remaining sets of classical trajectories
(wvhich are appropriate to energy-dependent cross sectiouns)
vere used to generate estimates of quantum mechanical
generalized phenomenological cross sections. These quanti-
ties are not rigorously defined in a classical sense owing to
the continuous nature of the classical rotational energy
spectrum. However, cone obtains good high energy estimates of
the quantal values by means of the following modified form of

Eq. {(4.4-27),

Q¥ owl:'*:) = :
27 (7)
———— b f[d 8.

578 3

55*0T0 (T, *) (- 3-27D

where for a homonuclear diatomic molecule,

™ a* 1 .
i = 2{|-2-ﬁ~’218kr + 7lt. (5.2-2)

Here, the curly brackets denote the "greatest integer" func-
tion. It is clear that the role of the Kronecker delta is to
divide the postcollisional domain of o* into subdcmains or
"hins" which correspond in an average sense to rotational
quantum states. Similarly, the precollisicnal domain of

can be divided iato a similar set of "bins" (i.e. j* and Q¥
are rerlaced by j' and £ in Eq. (5.2-2)). Finally, it should
be noted that the subdomains have been defined so as to be
centered on j*+l. This formulation has been adopted because

2
j +— corresponds more closely to [j*(j*+1)]% than either j*
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or j*+1. Thus, from Eq. (5.2-1), one obtains the result,
Q(T o7 ) = Jo(V o7 |j'~i) (5-2-3)
n 3 Vo

It is clear that Q(Tsd?nlj'+j) is easily evaluted as a Monte
Carlo estimate.
One then obtains an expression for the scalar collision

integrals in terms of the "binned" Q-cross sections as

followus,
{V¥ b@?n}vm
20 2 (5.2-4)
+s'+3 = - = \
[2“u1k15f9dﬂe [ay ¥375' Y ra (g et |51+d)
v 0 j n

This expression follows from the substitution of Egs. (5.2-3)
and (4.4-11) into Eq. (4.4-10). Finally, a classical esti-

nate of the generalized phenomenological cross section can be

written,
K +K )
K,K.;K}K* ) A 2
A R A _ (8 (2K+1) 1 s
03 515050 0 = S KKy oD Y T
. K* -1
<3HIs{® @ @ 57 < Hsgh” @ @9 13>, )
KM
oK)
(lo ] lj*J)
K} ij

This expression is obtained by equating the integrands ap-

pearing on the right hand sides of Eq. (5.2-4) and Eq.
_ _ (K,) _ (K)
(4.6-21) where V! is YsSét)(Qz)[yl £ [Q] 4" amnd Tv is

1 ] - 3 -~ .
YsSé? )(92)[11(Ké)[Q](K}2 Monte Carlo estimates of these
quantities appear in Tables 5.3, 5.4, and 5.5. These data
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Table 5.3. Classical Estimates of_the Generalized Phenomeno-
logical Cross Sections?

Cross Section

indices Final Rotor State
K, K; Kj K K 3=0 §=2 j=4 j=6P =8¢
0 0 0 0 0 =9.20 =21.3  =35.7 51.5 ~4.83
1 0 1 0 1 0.40  =1.59 ~4.01 86,9 -0.38
001 0 1 1 -3,27 ~5.47  =10.5 74. 9. -1.07
2 0 2 0 2 0.11. =0.62 -1.88 29.6 -0.17
0 2 0 2 2 =0.17 -2,10 ~4.61 15.9 -0.45
1 1 1 1 0 =0.74 -0.86 -0.85 20,4 -0.01
1 1 1 1 1 -0,03 ~0.51 ~1.46 13. 4 -0.16
1 1 1 1 2 =0.35  =0.69 -1.15 16.3 -0.10
1 2 1 2 1 -0.68 ~0.40 ~0.54 10.9 ~0.02
1 2 1 2 2 =0.10  =0.37 -0.72 8.46 -0.07
1 2 1 2 3 -0,44 -0.43 -0.53 10. 1 -0.05

@ TInitial rotor state = 6; imitial translational kinetic '
energy = 0.00500 eV. Cross sections are im squared
angstroms. The 6 6 cross sections are accurate to within
10%.  AI1l others are accurate to within a sign and an order
of magaitude.

The average of mixed cross sections appears in parentheses.

At this energy, the 6+8 channel is closed. However, the
structure of the “bins" includes a small contribution to
the 6 8 cross sections for an energy less than the
classical cutoff.
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Table 5.3, (continued)

Cross Section .
Final Rotor State

Indices
! U j= j= = = 1=

KZ Kj Kg Kj K j=0 j=2 j=u j=6 j=8

1.0 1 2 1  0.65 1.13 0.32 -3.91 -0, 11
(-30 9“)

1 2 1 0 1 0.5  =0.19 -0.42 -3.97 -0.07

2 0 0 2 2 =0.56 -0.59 -0.19 -0.05 -0.006
(0.09)

0 2 2 0 2 0.15 1.39  -0.06 0.22 -0.02

1.0 1 1 1 0.39i =-0.04i =0.7Ci =0.05i 0.004i
(-0. 13i)

1 1 1 0 1 0.171 =0.21i -0.66i =-0.21i 0.05i

1 2 1 1 1 =1.40i =0.85i =1.13i =1,13i -0.03i

1 1 1 2 1 -0.11i -0.04i =-0.88i ~=1.u42i -0.02i

1 2 1 1 2 0.92i 0.25i 0.23i 0.68i 0.02i
(0. 601)

1 11 2 2 0.151 0.05i 0.08i  0.52i 0.008i
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Table 5.4, Classical Estimates of_the Generalized Phenomeno-
logical Cross Sections®

Cross Section

Indices Final Rotor State

. . . ._¢b o o
K, K% K% K 3=0 =2 =4 =6 =8 =10
j Kp KY 3 j j 3 j 3

0 0 0 0 0 -5.98 =10.1 -14.7 36.5 -11.5 -3,20

1 0 1 0 1 -0.21 -0.56 -1.89 19.5 =1.50 0.09
0 1 0 1 1-1.06 ~1.50 -3.70 13.2 -3.17 =-0.80
2 0 2 0 2 0.12 -0.15 -0.93 17.7 -0.65 0.09
0 2 0 2 2 -0.97 -0.80 =1.57 8.81 -1.47 =~0.41
1T 1t 1 1 0 -0.17 -0.41 -0.44 8,02 -0.37 =-0.09

1T 1 1 1 1 -0.06 -0.33 -0.78 5.69 -0.54 0.09

1T 1 1 1 2 -0.21 -0, 34 -0.€2 6.73 -0.45 0.007

1 2 1T 2 1 ~0.45 -0.21 -0.32 4,32 -0.24 -0.02

1 2 1 2 2 0.06 0.33 -0. 34 3.57 -0,.,28 0.04

1 2 1 2 3 "0.17 -0016 "0033 uo16 "002“ 00001

1 0 1 2 1 0.38 0.68 0.35 =-1.26 -0.16 0.03
(-1.23)

1T 2 1 0 1 0.1<2 0.07 -0.26 -1.20 0.10 0.16

2 -

Initial rotor state = 63 initial translational kinetic
energy = 0.025€5 eV. Cross sections are square aagstrons.
The 6+6 cross sections are accurate to within 10%. All
others are accurate to within a sign and an order cf
magnitude, :

E The average of mixed cross sections aprears in parentheses.,
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Table 5.4. (comtinued)

Cross Section Final Rotor State

Indices _
KK, K' K* K =0 j=2 =4 j=6 j=8 i=10
JERTIAY ALY J J J J J J
2 0 0 2 2 0.22 o.1u‘ -0.,03 0,03 -0.04 0.005
(0.05)
0 2 2 0 2 -0.14 -0.13 -0.20 0.07 0.008 0.10
1 0 1 1 1 0.091 0,191 0.021i -0.29i -0.071i 0.05i
("0. 301)
1 11 0 1-0,09i =-0.121 =-0.09i -0.311 0.051 0,074
1 2 1 1 1 =-1.011i =-0.12i =-0.,151i -0.191i. -0.,06i -0.004
(‘0-211)
1T 1 1 2 1 -0,05i -0.061 -0.7111i -0,231i 0,101 =-0.011i
1 2 1 1 2 1.38i1 0.641 0.051 0.032i 0.04i 0.02i1
(0.0351
1 1 1 2 2 -0,031 0.02i 0.051i 0,0371 0.03i 0.011i




Table 5.5. Classical Estimates of the Generalized Phenomenolcogical Cross Sections?

Cross Section

Indices Final Rotor State
Ko K; K} K} K 4=0 j=2 j=4 j=6P j=8 j=10 §=12
0O 0 0 0 O -3.82 -7.60 -14.1 37.1 -11.2 ~4,32 =-0.96
1 0 1 0 1 -0.17 -0.62 -2.00 16.5 -1.43 -0.08 0.15
0o 1 0 1 1 -0.15 -1.03 -3.25 13.3 -3.06 -1.24 -0.26
2 0 2 0 2 0.C01 -0.09 -1.01 11.2 -0.56 0.06 -0.005
0 2 0 2 2 -1.18 -0.60 -1.64 6.91 -1.34 -0.58 -0.13
11T 1 1 0 0.05 -0.11 -0.50 6.60 -0.34 -0.12 -0.02
T 1 1 1 1 -0.04 -0.26 -0.89 4,¢€6 -0.58 0.02 0.08
1T 1 1 1 2 -0.02 -0.27 -0.73 5.66 -0.44 -0.05 0.04
1 2 1 2 1 -0.16 -0.094 -0.39 3.57 -0.27 -0.04 0. 006
2 1Initial rotor state = 6; initial translational kinetic energy = 0,05000 eV,
Cross sections are_in square angstroms. The 6+6 cross sections are accurate
to within 10%. All othérs are accurate to within a sign amd an crder of
magnitude,
b

The average of mixed cross sections appears ir parentheses.

uk44



Table 5.5.

(continued)

Cross _ Section

Final Rotor State

Indices
i 9 L] i= i= i=4 i=6 i=8 j= i=
SE Ki K£ Kj K j=0 j=2 | 3 j j=10 j=12
1 2 1 2 2 0.09 -3.00C6 -0.36 3.54 ~0.30 -0.004 0. 04
1 2 1 2 3 -0.04 -0.10 -0.37 3.66 -0,25 -0.04 0.C2
1 0 1 2 1 0. 29 0.“6 0-“2 (-80%2)9 -00 25 0.0" '0.0“
1 2 1 0 1 -0.36 -0.02 -0.24 -0.871 0. 15 0.16 0.07
2 0 0 2 2 0.08 0.12 -0.10 (8.?%? -0.09 0.007 0.03
2 2 0 2 0.38 0.04 0.09 0. 201 -0.07 0.10 0.05
1 0 1 1 1 0.081 0.091i 0.071 (-g.gg%_- ~0.091i 0.111 0.02i
“Voe 1
1T 1 0 1 0.06i 0.04i -0.161 -0.101 -0.041 0.151 0.03i
1 2 1 1 1 -0.22i -0.,23i -0, 411 (‘8.539% -0.,231 -0.02i 0.0021
“VUe 1
1T 1 1 2 1 -0.221 -0.031 -0.301 -0,3221 -0.32i -0.091 -0,0081
1 2 1 1 2 0.251 0.171 0.101 0.09i 0.10i 0.1Ci 0.01i
» (0-0904)
1 1 1t 2 1 0.02i 0.021i 0.121 0.091i 0.101 . 0.08i 0.011

A4
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will be discussed in detail in Section 5.3.

Quantun mechanical calculation of generalized
phenomenological cross sections amd selected effective cross
sections was carried out within the I0S (infinite order
sudden) approximaticn for the Ar-N2 potential surface
mentioned previdusly. Calculations were not attempted for
and He-CO, surfaces because of the large number of

2 2
open scattering channels possessed by these systems. Also,

the Ar-Co

the author had hoped to include CS (coupled states) and CC
(close coupling) calculations in the present work, However,
limitations of time and computational resources made this im-
possible. It is hoped that the IOS results presented will
provide a convenient reference point appropriate to future
work involving CS and CC approaches.

As with the classical trajectory work, the author
received invaluable aid from a collaborator, namely Dr. Dale
E. Fitz of the University of Houston, who provided a series
of computer programs appropriate to IOS L-average calcula-
tioas.

Values of L-average, L-initial, and L-final generalized
phenomenologicai cross sections appear in Tables 5.6, 5.7,
5.8, and 5.9. As in the classical trajectory calculations,
the initial rotor energy was chosen to correspond to a
rotational quantum number of six. Similarly, three iaitial

values of the relative translational kinetic energy were
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Table 5.6. ICS'L-average Values of the Generalized

Phencmenclogical Cross Sections?

Cross Section .
Final Rotor State

Indices

K, K, Kp K} K 320 §=2 =4 j=60 j=8

0 0 0 0 0 -3.44 =9.69  =18.5  60.5 -18.0

1 0 1 0 1 0.0365 =0.540  =-3.22  30.2 -3.21
0 1 0 1 1 0.0 =1.98 -5.06 21.0 -5.4

2 0 2 0 2-0,0102 -0.157  -1.21  22.5 -1.20
0 2 0 2 2 0.0 -0.812  =2.30 13.4 -2.79
1 1 1 1 0 0.0 =0.324  =0.996 11.4 -1.06
1 1 1 1 1 0.0 =-0.1246  =1.05 9,49 -1.04
1 1 1 1 2 0,0 =0.206  =1.03 10,3 -1.05
1 2 1 2 1 0.0 =0,193  =0.611 6.47 -0.632
12 1 2 2 0.0 0.0331 -0.482 5.84 -0.552
1 2 1 2 3 0.0 =0.112  =-0.565 6.25 -0.604
1 0 1 2 1 0.0 =-0.0688 =-0.224 ~=-1,04 -0.189
1 2 1 0 1 0.0 0.617  =0.217 =-1.04 . 380

4 7yIpitial rotor state = 6;
0.01550 eV,

energy =
angstrons.

b This is a rigorously closed channel.

initial translatiomal kinetic
All cross sections are im square
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Table 5.6. (continued)

Cross Section Final Rotor State

Indices

Ky K, Ky K%K §=0 j=2 =4 j=6 j=8

2 0 0 2 2 0.0 -0.0540 =~0.164 0.178 -0.199

0 2 2 0 2 0.0936 0.0947 =-0.217 0.178 -0.230

1 0 1 1 1 0.0 0.0 0.0 0.0 0.0
11 1 0 1 0.0 0.0 0.0 0.0 0.0

1 2 1 1 1 0.0 =-0.106i =0.249i =-0.108i =-0.203i
1 1 1 2 1 0.0 -0,297i -0.364i -0.108i ~-0.266i
1 2 1 1 2 0.0 -0.0474i 0.111i 0.0514i  0.0906i

11 1 2 2 0.0 0.1331 0.163i (0.05144 0.119i




Table 5.7. 1IOS L-initial/g-final Values of the Generaiized Phenomenological
Cross Sections

Cross_Section

Final Rotor State

Indices
Ky K; K K! K j=0 j=2 j=4 §=6 j=8P
0 0 0 0 O -3.46 -9.72 -18,5 60.5 -18.0
1 0 1t 0 1 0.0336 -0.547 =3,22 30,2 -3.21
0 1 0 1 1 0.0 -1.58 ~5.06 21.0 -5.48
2 0 2 0 2 -0.C116 -0.161 -1.21 22.5 -1.21
0 2 0 2 2 0.0 -0.813 -2.30 153.4 -2.79
11 1 1 0 0.C -0.0617 =0.660 9.21 -0.668
T 1T 1T 11 0.C -0, 257 -1.22 10.6 -1.23
T 1T 1 1 2 0.0 -0.179 -0.994 10.0 -1.01
2 7Jpnitial rotor state = 6; initial translaticnal kinetic energy = 0.01550 ev.

All cross secticns are 1in squared angstroms.

b cThis is a rigorously closed channel.
c

0220(2) and 2002(2) have different L-initial and L-final values. The

L-initial results appear first followed by the L-final results.

62



Table 5.7.

{continued)

Cross_Section

fndices Final Rotor State

KZ Kj Kk K?.K j=0 j=2 j=u j=6 j=8

1 2 1 2 1 0.0 -0.0442 -0.427 5.90 -0.474

1 2 1 2 2 0.0 -0.117 -0.667 6.41 -0.712

1 2 1 2 3 0.0 -0.0702 -0.513 6.08 -0.5¢&¢

2 1 0 1 0.C107 -0.152 - =0.593 0.860 -0.188

1 0 1 2 1 0.0 -0.0194 -0.114 0.830 -0.535

0 2 0 2€ C.349 0.834 0.882 -1.58 -0.142
0.0058 0.070 «360 =0.512 0.120

2 0 0 2 2 0.C058 0.0032 0.0834 -0.512 0.322
0.0 0.0u434 -0.207 -1.5S 0.673

1 0 1 1 1 0.0 0.0 0.0 0.0 0.0

1 1 1 0 1 0.0 0.0 0.0 0.0 0.0

1T 1 1 2 1 0.0 0.01351 0.1471 -0.0910i 0.0759i

1 2 1 1 1 0.0 0.04811 0.1011 -0.09101 9,979(-2) 1

1T 1 1 2 2 0.C -0.0060i1 -0.06601 0.04071 -0.03401

T 2 1 1 2 0.0 -0.00221 -0.0451 0.04071i -0.044€1

0€



Table 5.8. IOS L-initjial/L-final Values of the Generalized Phencomenological
Cross Sections@
Crgggigggtion Final Rotor State
Kp K; Kp K% K j=0 j=2 j=u j=6 j=8 j=10
0 0 0 0 O -3.53 -8.50 -14.1 53.2 -13.6 -7.51
1 0 1 0 1 0.032 -0.518 -2,61 23.8 -2.61 -0.531
o 1 0 1 1 0.0 -1.48 -3.75 18. € -4,25 -2.39
2 0 2 0 2 -0.024 -0.101 -1.08 16.7 -1.07 -0.105
0 2 0 2 2 0.0 -0.635 -1.67 11.6 -2.01 -1.13
1T 1 1 1 0 0.0 -0.058 -0.555 6.94 -0.563 -0.039
11 1 1 1 0.0 -0.270 -0.998 8.20 -1.02 -0.249
1 1 1 1 2 0.0 -0.181 -0.827 7.70 -0.827 -0.1€5
1 2 1 2 1 0.0 -0.0u45 -0.362 4.€2 -0.415 -0.069
4 1Ipitial rotor state = 6; initial translational kinetic energy = 0.02585 eV,
1 cross sections are 1in squared angstrcms.
b

0220(2) and 2002(2) have differeant L-initial and L-final values.
L-initial results appear first followed by the L-final results.

LEC



Table 5.8. (continued)

CIgﬁgigggtion Final Rotor State

Rp K; Ky K K =0 j=2 j=4 j=6 =8 j=10

1 2 1 2 2 0.0 -0.116 -0.557 5.04 ~0.605 <0.14

1 2 1 2 3 0.0 -0.064 -0.425 4,78 -0.470 -0.0%4

1 2 1 0 1 -0.080 -0.150 -0.474 0.742 -0.141 -0.075

1 0 1 2 1 0.0 -0.018 -0.075 0.742 -0.427 -0.142

o 2 2 o 2P 0.360 0.729 0.683 -1.22 -0.17¢ -0.055
-0.017 0.130 0.326 -0. 472 0.131 0.027

2000 22 88 B8 BB R SR 8:8%

. . O s £ . .

1 0 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0

11 1 0 1 0.0 0.0 0.0 0.0 0.0 0.0

11 1 2 1 0.0 0.0174 0.132i -0.1031 0.065i -0.0031

1 2 1 1 1 0.0 0.003i 0.090i -0.1034 0.086i -0.004i

11 1 2 2 0.0 -0.0084% -0.059i 0.04851 -0.029i 0.001i

1 2 1 1 1 0.0 -0.001i . -0,004i .. .0.0485i .. -0.039i

0.020i

cee



Table 5.9. I0S L-initials/L-final Values of the Generalized Phenomenological
Cross Sectionsa
Cross.Section Final Botor State
Kﬂ Kj Ki K} K j=0 j=2 j=u j=6 j=8 j=10 j=12
0 0 0 0 0 -3.30 ~6.62 -10.6 42.5 -10.0 -6.81 =3.68
1 0 1 0 1 -0.056 -0.532 -1.79 16.8 -1.79 -0.541 . 0.049
o 1t 0 1 1 0.0 -0.892 -2.39 15.7 ~-2.85 -1.64 -1.25
2 0 2 0 2 0.049 -0.060 -0.879 1.4 -0.881 -0.08¢% 0.072
0 2 0 2 2 0.0 -0.399 -1.04 9.58 -1.32 -0.938 -0.580
1T 1 1 1 0 0.0 -0.051 -0.415 5.06 -0.413 -0.041 -0.025
1T 1 1 1 1 0.0 -0.286 -0.714 6.01 -0.712 -0.2061 -0.056
1T 1T 1T 1 2 0.C -0.197 -0.588 5.64 -0.591 -0.180 -0.,058
1 2 1 2 1 0.0 -0.040 -0.247 3.24 -0.285 -0.72 -0.007
2 1Ipjtial rotor state = 6; initial tramslational kinetic energy = C.050 evV.
All cross sections are in squared angstrcms,
b

0220(2) and 2002(2) have different_ L-initial and

-final values.

L
L-initial results appear first followed by the L-final results.

The

€ed



Table 5.9. (continued)

Cross_Section

Indices PFinal Rotor State
R, K, Ky KL K 3=0 j=2 j=4 j=6 j=8 j=12 j=12
1 2 1 2 2 0.0 -0.091 -0.346 3.34 -0.394 -0.141 =-0.023
1 2 1 2 3 0.0 -0.065 -0.279 3.57 -0.323 -0:101 =0.012
1 2 1 0 1 =-0.030 =-0.151 -0.301 0.609 -0.047 -0.071 =-0.040
1 0 1 2 1 0.0 -0.009 0.001 0.609 -0.275 =-0.142 =-0,085
0 2 2 o 2P 0.327 0.582 0.509 -0.847 -0.159  -0,06¢C 0.040
0.026 0.026 0.272  -0.429 0.125 0.035 -0.100
2 0 0 2 2 0.0 0.019 0.093  -0.429 0.251 0.040 =-0.025
0.0 -0.040 -0.120 -0.847 0.331 0.320 0.2€0
10 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 1 0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 1 2 1 0.0 0.048i 0.119i -0.089i 0.056i =0.002i =-0.010i
T2 1 1 1 0.0 0.0181 0.081i -0.089i 0.073i 0.,001i =-0.020i
1 1 1 2 2 0.0 -0.021i -0.052i 0.0432i =-0,026i =-0.001i 0.005i
12 1 1 2 0.0 -0.0131  -0.037i  0.0432i -0.034i =-0.011i  0.100i

hee
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chosen as 0.01550 eV, 0.02585 eV, and 0.0500 ev. It should
be noted that the lowest energy, 0.01550 eV, was used in this
case intead of 0.00500 eV as in the classical case. The
reason for this is twofold. First, the WKB phase shifts cal-
culated using Pack's method(69) cannot be obtained simce
0.00500 eV falls near an extremum of the potential for some
partial waves. Second and more importantly, the IOS approach
is likely to be greatly in error for this energy anyway,
since the collisional rotational energy change is a large
fraction of the relative translational energy. A detailed
comparison of I0S and classical trajectory results will be
given in the next section.

Values of selected effective cross sections within the

I0S approximation were obtained via the fcllowing equation,

K, /K K),K!
L’ {.K yA i.K _
{[q’M '. ]Q'[q>M' ]Q}\)'w
K,+K}
L' L 5
8KT, , 5 . o
[““vaﬂlKﬂl[(sz)!(ZK;)!]%jglexpi—ﬁ§ JY('+1)]

<lsg™ @@ %7 [1a><y 11857 @y 59 13> (5-2-6)

® _.+ 48' %5 K,K ;KIK!
gde' e e e ojg;g,jg I (x)

This expression follows directly from Eq. (4.6-21) where one

2

notes that ¢ = YZ and €' = y'" and one drops superfluous sub-
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scripts, "i" and "f." The integral over the tramnslational
energy is easily evaluated as a Gauss~lLaguerre quadrature.
Values of the generalized phenomenological cross sections at
the appropriate quadrature points were obtained by graphical
interpolation between values obtained at the three test
translational energies. A thpee point quadrature was found
to converge sufficiently for the purposes of this work.

These results will be presented and discussed in Section 5.4.

5.3. Comparison of the Numerical Values of the Generalized

Phencmenological Cross Sections

The generalized phenomenological cross sections appro-

priate to the kinetic theory of gases (i.e. spectroscopic

subscripts "i" and "f" are ignored) can be classified as
"unmixed," "mixed real," aad "mixed imaginary." The unmixed
cross sections are characterized by KZ = Ké and Kj = K;, the
mixed real cross sections are characterized by &£+Ké and Kj
+K}, both even, and the mixed imaginary cross sections are
characterized by §£+§é even and Kj+K; odd. Only the unmixed
cross sections have noavanishing spherical limits.

To begin detailed comparison of the numerical values,
one should investigate I0S values of the cross sections ob-

tained using each of the three labeling schemes (i.e. L-

average, L-initial, and L-final). Appropriate data has been
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presented in Tables 5.6, 5.7, 5.8, and 5.9.

At the outset, one should note that L-initial and L-
final results are ideatical if KK = Ké. (This point is dis-
cussed in Section 4#.7.) Thas, of the quantities evaluated,
only the 2002(2) and 0220(2) mixed real cross sections can
have different L-initial and L-final values. The results
given in Tables 5.7, 5.8, and 5.9 show these values to be in
very poor agreement.

It is more profitable to compare lL-average with
L-initial/L~-final results. One finds excellent agreement
(to three decimal places) between values of the 0000(0),
1010(1), 0101(1), 2020(2), and 0202(2) cross sections. Only
fair agreement is found between the remaining unmixed cross
sections (1111(K) and 1212(K)). Finally, the mixed cross
sections (both real and imaginary) show very poor agreement
(disregarding the 1011(1) and 1110(1) cross sections for
which all IO0S values trivially vanish).

Digressing briefly, it is possible in general to relate

the usual degeneracy averaged integral cross section to the

0000(0) cross sectiomn via the expression,

00;00
jj;jljl(o) =
sy .' ) . 20| 1 - - (5.3-1)
4—(2342 1%0(3'*3) + ij'gn[i%méTJ%o(J +3")

Equation (5.3-1) is easily obtained from Eq. (4.6-22) by sub-
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stitution of the appropriate tensor indices and rotor guantum
numbers followed by use of the optical theorem. The
degeneracy averaged integral cross section has the explicit

form,

o .
o(31eg) = T (2T, I79 (52527 |2 (5-3-2)
L2 2j'+1 '
Kj' J=0 L
where TJ(jzlj'z') is an Arthurs and Dalgarno T-matrix ele-
ment.

Pack (70) has used the same Ar-N_ potential as used in

2
this work to calculate CC and IOS values of ¢g(j'+j). Direct
comparison of Pack's IOS results to this work via Egqg. (5.3-1)
for an initial relative translational energy of 0.02585 eV
results in virtually exact agreement. Pack's data appear in
Table V of the above reference. Furthermore, Pack has found
that classical trajectory and CC degeneracy averaged integral
cross sections exhibit excellent agreement for am initial
translational energy of 0.03878 eV. Thus, it is the opinion
of this worker that gquantal corrections are negligible for
the cases considered and that the Monte Carlo results are
good estimates of the rigorous cross sections.

Detailed numerical comparisons will now be drawn between
the classical trajectory and I0S data. Here it is important
that the reader take notice of the inherent random error as-

sociated with Monte Carlo methods and the low frequency of

strongly inelastic collisions for this Ar-N, potential
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surface. It follows that Monte Carlo values of the
rotationally “off-diagomnal" (i.e. j#¥j*') cross sections should
be regarded as providing estimates only gocd to within an
order of magnitude and as having the correct sign. The Monte
Carlo values of the rotationally "diagonal" cross sectioas
(i.e. j=3j) are much more accurate (within 10 perceat) owing
to the larger number of trajectories used to construct the
estimate. Table 5.10 presents Monte Carlo and IOS values of
KKKJ; KéK} ) ) ]
066;66 (K) for ccmparison. It is evident that the
agreement between lMonte Carlo and IOS results improves with
increasing energy. This is, of course, the expected result.
More importantly, it is clear that the L-average labeling
scheme gives better agreement with the Monte Carlo results
than does the L-initial/L-final results differ in sign from
the L-average and Monte Carlo results. Also, the L-average
results show better agreement with Monte Carlo results than
do the L-initial/L-final results for unmixed cross sectioas,
1111(K) and 1212(K). One also observes that diagonal‘values
of unmixed cross sections with KK = (0 are systematically too
large. 1In contrast, for unmixed cross sections with Kj =0
and KC#(L there is very good agreement between the classical
trajectory and I0S results.
The reader should note that nonzero values of the

1110(1) and 1011(1) cross sections are given by Monte Carlo

methods. A plot of the Monte Carlo contribution to the "di-



Table 5.10. <Ccmparison of Monte Carlo and IOS Values of the
6+6 Generalized Phencmenolcgical Cross Sections?

Cross Section 0.0155 eV = E 0.02585
Indices

Ko Kj K} KY K cT 10S 1cs T cr

0 0 0 0 0  H4z.4 6C.5 60.5 36,5

10 1 0 1 272 30.2 30.2 19.5

0 1 0 1 1 20,1 21.0 21.0 13. 2

2 0 2 0 2 25,1 22.5 22,5 17,7

0 2 0 2 2  11.4 13.4 13.4 8.81

11 1 1.0 1.2 9.21 1.4 8.02

111 1 8. 25 10.6 9.49 5,69

11 1 1 2 9.95 10,0 10,3 6.73

1 2 1 2 1 6. 4C 5,90 6.47 4,32

1.2 1 2 2 4.77 6. 41 5. 84 3.57

1.2 1 2 3 5,89 6.C8 6.25 4,16

10 1 2 1 -2,25 0..830 -1.04 -1.23

12 1 0 1 -2,25 0.830 -1.04 -1.23

2 0 0 2 2 0.€55 B 0.178 0. 050

0 2 2 0 2 0,055 R 0.178 0,050

1.0 1 1 1  -0,266i 0.0 0.0 -0.300i

11 1 0 1 -0.266i 0.0 0.0 ©-0.300i

a All cross sections are ia squared angstroms and the
values are accurate to within 10R.
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eV = E 0.0500 ev =
I0S I0s T CT 108 I05 L
€3,2 53. 2 37.1 42.5 42,8
23.8 23.8 16,5 16.8 16. 8
18.6 18.6 13.3 15.7 15,7
16.7 16.7 1.2 11.4 1.4
11.6 11.6 6.91 9.58 9.58
6.94 8.70 6,60 5,06 6. 48
8. 20 7.32 4. 86 6.01 5.31
7.70 7.93 5,66 5,64 5.79
4.62 .06 3.57 3.24 3.61
5.04 4.57 3.54 3.34 .30
4.78 4.82 3.66 3.57 3,47
0.742 -0.764 ~0.860 0.609 -0, 442
0.742 -0.764 -0.860 0.609 -0. 442
T2z 0.195 0.120 mo.837 0.196
Z0-472 0.185 0.120 Z0.429 0. 196
0.0 0.0 -0.0€51 0.0 0.0
0.0 0.0 -0.0851 0.0 0.0



Table £5.10 (continued)

e ik . i

Cross Section 0.0155 eV = E 0.02585
Indices : k
K_ K. K' K! K ‘CT IQS I0OS T cT
L 4 2 4
1 2 1 1 1 -0.5111 -0.09101 -0, 1081 -0,2101
1T 1 1 2 1 ~0.5111 ~-0.09101 -0. 1084 -0,2101
1 2 1 1 2 0.2011 0.,04071 0.05141 0.035i
T 1 1 2 2 C.2011 0.04C71 0.05141 0.035i
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eV = Ek 0.0500 ev = E

ICS IcCs T CT I0S I0OS L
-0,1031 -0.1041i -0.,3201 -0.C089i -0.108i
-0.1031 -0.1041 -0.3201 ~-0.089i -0.1081
C.0u85 0.0500i 0.090i 0.04521 0.05354
0.0u485 0.05001 0.0901 0.0452zi 0.05351
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agonal" 1110(1) cross section versus impact parameter appears
in Fig. 5.3. From this plot, it is clear that the "diagonal"
1110(1) cross section is the difference of two nearly equal
contributions (which are exactly equal within the IOS approx-
imation).

In conclusion, it should be mentionéd that the magni-
tudes of I0S values of cross sections which involve am in-
crease in rotational energy (i.e. Jj'+j where j>j') are
systematically too large. In fact, the IOS approach gives
nonvanishing contributions in energetically closed channels.
This obviously incorrect behavior is characteristic of the
I0S approximation and is also observed in IOS calculations of
degeneracy averaged integral cross sections. Thus, if one
makes use of IOS results to evaluate physical quantities
(e.9. transport coefficients), one should ignore such
unphysical cross sections.

This section can be summarized by the fcllowing conclu-
sions. PFirst, the L-average IO0S calculations are in better
agreement with the Monte Carlo results than the IOS
L-initial/L-final calculations. This is not surprising be-
cause L-average labeling preserves time reversal invariance
while L-initial/L-final labeling does pot. Second, the I0S
approximation gives poor results for cross sections which are
most sensitive to angular momentum reorientation (i.e. the

mixed cross sections). This is especially true for
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L-initial/L-final labeling. Finally, material disagreement
between I0S and classical trajectory results in the cases
considered are overwhelmingly due to the approximate nature
of IOS dynamics rather than to quantum effects. Comnplete
verification of this last conclusion must await accurate CC

calculations.

5.4. Comparison of the Numerical Values of the

Effective Collision Cross Sections

As stated previously, it is coavenient to compare theo-
retical and experimental results at the level of the effec-
tive collision cross sections rather than that of the actual
transport coefficients. In fact, results cf experimental
studies of gas phase transport processes are now customarily
reported in terms of effective cross sections.

One source of experimental data which can be used for
comparison with theoretical results is embodied in published
values of Lennard-Jones force constants which are then used
to evaluate the appropriate Chapman~Cowling integrals. Such
data, of course, can only be profitably aprlied to effective
cross sections which possess a dominant spherical contribu-
tion. Table 5.11 gives Lennard-Jones values in squared

angstrons for the predominantly spherical cross section,

G( 1000,8

' well with the Monte Carlo
1000l g * These values agree
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results. Thus, one can conclude that the theoretical poten=-
tial surfaces considered in this work are realistic in a

spherical sense (at least).

IOOOIB

Table 5.11., Comparison of Values of 61000 B)aB

Potential Ar-C02 Ar-coz Ar-COz Ee-COz Be-coz He-c02 Ar-Nz
Surface 300°K 900°K 1800°K"~ 300°K 900°K 1800°K 300°K

a
~ Lennard A
Realistic® 26.2% 15,6 17.4 3,08 2.58 2.27  29.1
3  Force constants okttained from data given by Hirschfelder,
Curtiss, and Bird(40) via the usual combination rules,
b
Mcnte Carlo estimates from Table 5.1.
c

Both Ar-COz(I) and AI-COZ(II) give the same value.

However, the nonspherical contribution to a molecular
interaction is much more difficult to investigate than the
spherical contribution. As stated in Chapter 1, analysis of
Senftleben-Beenakker effects (on the thermal diffusion coef-
ficient in particular) is one means of cbtaining rather
direct information of this kind. t'Hooft(51) has given ex-
perimental values of depolarization cross sections obtained
from measurements of thermal diffusion Senftleben-Beenakker

effects in an At-Nz nixture at 300°K. Specifically, experi-
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1000, 1010 B 2

t 0.66 A d
mental values of 9(120018) Band 9(1200 B) of an
-5.4 a2 respectively, have beem given. These values 4o not
at all agree with the theoretical values of 0.111 A2and 0.292

32 (given in Table 5.1). 1In contrast, experimental values of

: : 1100 B = 22
the diagonal cross sectioas, (1100 B) = 26.0 A“ and
1200, B _ °2 . o .
G(IOIO'B)aB = U46.7 A are in much Lbetter agreement with the

theoretical results (28.1 82 and 53.8 KZ, respectively).
These cross sections, however, have a significant spherical
contribution which makes this agreement not surprising. Fi-
nally, t'Hooft observes a value of 24.0 22 for the cross sec-
tion G(OZOOIB) . The theoretical value is 7.12 2. The

0200 B  aB
reader should note that G (02008, is highly sensitive to

0200 B aB
the gross anisotropy of the potential surface in the direc-
tion parallel to the symmetry axis of the diatom. Comparison
of the theoretical and experimental results suggests that the
Ar-N, surface considered in this work is much too spherical
and not at all realistic.

Unfortunately, it appears that no experimental measure-
ments of Senftleben-Beenakker effects appropriate to Ar-Co2
and He-CO2 systems have been made to date. This makes it im-
possible to determine if the Ar-COz(I)'surface or
Ar-COz(II) is more realistic.

Table 5.12 presents I0S values of selected effective

collision cross sections. In agreement with results given

previously for the generalized phenomenological cross sec-
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Table 5.12. Values of Effective (ross Sections:
I0S and Classical Trajectory Results for
the Pattengill et al., Ar-N, Potential Surface

2

Cross Classical idgs percent 6GPCS®

Section? Trajectory Deviation used

(1000 B 29.1(1.8 30.1 3.4 1010 (0

2020 (2)

6 (10108, 39,7(5.9) 43.1 8.6 1010 (1)

(o108 aB 0000 (0)

(1001 .0 (8. sp.3 1010(1)

1001|B a8 35.0(8.6) 49.8 2.3 1000 (0)

G (02008, 7.12(3.7) 35.6 400, 0202 (2)
(02008’ a8

G([l](Z)‘[l](Z))as 159.9 (3. 4) 14,4 -9,7 2020 (2)

G(Y2 ,9° ) o, -4,68(3.7) =22.1 372, 0000 (0)

G(Q ,Y)

@ All cross sections are given in units of squar=d angstroms.

b an estimate of the percent relative standard deviation
aprears in the pareantheses.,

C Generalized phencmenological cross section.
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tions, one finds that the effective cross sections which com-
tain thermal averages over the 0000(0) or 0202(0) cross sec-
tions show a significant positive deviation. Coniersely,
those which depend on thermal averages over the 1010(1)
and/or 2020(2) cross sections but not the previously

mentioned omnes, agree well with the Monte Carlo results.

5.5. Comparison of Hard and Soft Sphercocylinder Models

to Classical Trajectory Results

Expressions for scalar collision integrals appropriate
to hard convex ovaloid interactions were given in Section
4.3. Verlin, Matzen, and Hoffman (64) have extended this ap-
proach to an approximate treatment of soft nonspherical mo-
lecular models. The essence of this technique involves the
modification of Eg. (4.3-7) to obtain a collision kernel ap-
propriate to convex core soft interactions. It has the fol-

lowing forn,
<p 42z 101pi4iR5> =

27
£ Jan{_ | aRs, (R)K k-gs(p'-p)8(L]-L,) +
0 -2<0 1,2
uni t
hemisphere -

2y 2y
) dks,  (K)Kk-gs (E'-g+——5°ﬁg-ﬁﬁ) 6(£:1-£, -—Eﬁi'ﬁs) }8(p-R")
k'2>0. 1,2 : (5¢5-1)
unit

hemisphere
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Here, a dimensionless scaling factor, K, has been included
within the integrand and the surface, 05,2' is given a more
general definition than in Section 4.3. Thus, 01'2 is iden-
tified as the convex equipotential surface upon which the mo-
lecular interaction energy vanishes. 1In the limiting case of
a “hard" interaction it becomes the surface containing the
"excluded volume." All other quaamtities appearing in Eq.
(5.5-1) retain the same definitions as given earlier.

If one carries through with the operator method given by
Egs. (4.3-9) through (4.3-17), one obtains‘an expression

identical to Eq. (4.3-18) where the tensor quantity (u,v)n

has the fornm,
(u,v), =

[ ]
-Cc K =,u =y u vV
EﬁL1dgp édeKe Kl(c-e k)™ - (c+e K) "] (c=e K) € (5-5-2)

Equation (5.5-2) is identical to Eq. (4.3-19) except for the
appearance of K in the integrand.

Following Verlin, Matzen, and Hoffman(64) , one can argue
that since the componeat of the generalized momentumi_g,
along the generalized apse vector, x, (K = (R]-g)/D) changes
sign on collision, it follows that ¢ is orthogonal to K for

an odd number of times during a molecular encounter. The
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temporally central perpendicular configuration defines the
apse point of the collision.

In general, K is a véry complicated function of orienta-
tion and momenta and thke integrals indicated in Eq. (5.5-2)
cannot be carried out analytically. However, one class of
nodels exists for which K can be simplified approximately.
These are designated as "Kihara models" after Kihara who in-
troduced them in 1951(71). A Kihara interaction potential
nodels molecular interactions as impenetrable hard cores
which interact via a potential, ¢, which is solely a function
of the shortest distance, 4, between the cores (i.e. ¢ (5) is
of spherical form). Thus, molecular forces are directed
along a vector connecting points of clcsest approach of the
cores and molecular torques can be thought of as arising fron
the application of the force omn a given molecule at the
closest approach point on its core. It follows that the di-
rection of forces and "moment arms" for the torques are inde-
pendent of the magnitude of the molecular separation and
depend only on molecular orientations and the direction of
the unit vector, Kk, which is perpendicular to the surface of
each core at its point of closest approach. Exanmples of a
Kihara interaction are afforded by soft spherical potential
models and rigid ovaloids.

Again, following Verlin, Matzen, and Hoffman, it is

assumed that for a Kihara interaction, the generalized force
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(defined as _f = g%) is parallel to the apse vector at the
apse point of a collision. Such an assumption is rigorously
valid for both soft spherical models and rigid ovaloids under
the assumption that chattering collisions cam be neglected.
One further assumes that for a Kihara potential, the scaling

factor has the explicit fornm,
J
K=-%. (5.5=3)
r2
m

Here J¢ is the spherical differential cross section appropri-
ate to the intercore potential, ¢. The distance, L is
characterized by ¢(rm) = 0. This form of K depends on ¢
solely through the quantity i-e¢ and reduces to the soft
spherical and rigid ovaloid expressions in the appropriate
limits. Physically, the assumed momentum dependence of k is
that appropriate to a spherical model but with a sphere radi-
us and sphere center which depend on the molecular orienta-
tions and the closest approach surface normal at the apse
point.

These assumptions allow the "u,v tensors" to be evaluat-
ed, when u+v is even, in terms of the usual reduced Chapman-
Cowling omega integrals appropriate to the imtercore potean-
tial, ¢. If u+v is odd, the spherical integrals obtaimed can
be thought of as a gemeralization of Q(z'é)* to half-integer

values of s. Substitution of these forms into Eq. (4.3-23)
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yields expressions for the scalar collision integrals which
involve the Chapman-Cowling omega integrals and the surface
integrals, x(n), T(n,m)' and 6 which are defined in Egs.
(4.3-26), (4.3-27), and (4.3-28).

For several reasons within the context of this analysis
a spherocylinder proves to be am advantageous choice of core
shape appropriate to the linear species, B. First and
foremost, the shapes of the inner repulsive parts of poten-
tial surfaces, Ar-COz(I) and Ar-COZ(II), are closely |
approximated by a spherocylimnder. (Here one notes that the
excluded volume appropriate to a rigid spherocylinder-sphere
ccllision is also a spherocylinder.) Second, surface area
integrals for spherocylindrical excluded volumes can be eval-
uated analytically. Last, a large body of literature exists
which details the evaluation of transport properties using
spherocylindrical models(72,73).

It should be noted here that a spherocylinder is not
convex (i.e. surface points and normal unit vectors cannot be
uniguely associated). This presents no problem (as expected
since convexity was assumed just for mathematical
convenience) and thus spherocylinder surface integrals can be
performed in a piecewise fashion over spherical and
cylindrical regions. The basic surface integrals, X(n)'

p(N/M)  and ¢ take the spherocylinder forms,
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N
¢« BLefar a2 4 xnfantipnn )2 .50

R

3/2
G-E-Az,‘/2 ofdz z(1-2 )[—24-1 221" (5.5-6)

vhere A is a length defined by [IB/ﬁdB]%, L is the spherical
radius and R is the cylindrical dimension. Figure 5.4 illus-
trates the geometry of spherocylindrical molecular models.
For this work, explicit expressions for x(-1), x(1), x(3),

x(s). x(I'Z), x(3'2), and G are needed. These are given

below in terms of the dimensionless parameter n (equal to arc

sin(R/-J52+R2) which ranges from 0 to n/2.

(-1_) 2 n R ¢ 1 + 1
X = ro{{‘+§IHﬁEEEﬁ} + r_'cosn’ tann”n(tan"+ )}}(5 >=1)
2
2r
(1) o R 1
X = {n + — £&n(tann + )y} (5.5-8)
tann . T, cosn
x(3) =~2r§ cosn{cosn + fi} (5.5=9)
o
2r2 2 R 2
x(5)‘__ 3°‘{(cosn)2(l+2(cosﬂ) )+ Fcosn ((cosn) “+ 2) }(5.5-10)
. - o
(1,2) To n R
e = { — - } (5.5-11)
tann (sinn)z tann :



Fig. 5.4
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2
32 %o . n, (5.5-12)
(tam)z tann
2
: —-——-37-r° {1 + —2— tn(cosn)} (5.5-13)
G = . n(cosn .=
(tann) 2 (tann)

These are easily evaluated by means of a hand calculator.

It is stated in Chapter 1 of this dissertation that one
of the motivations for this work is the assessment of
strengths and weaknesses of model calculations in the light
of rigorous trajectory studies. 1In particular, since the
Kihara model approach just developed rgpresents the greatest
sophistication achieved using the "projectiom" operator
techniques, the assessment of its applicability is of partic-
ular interest.

The primary deficiency characteristic of model calcula-
tions can be summarized as an oversimplification of the rele-
vant molecular dynamics. This oversimplification is embodied
in the choice of an inherently unrealistic interaction poten-
tial for which rigorous dynamics are easily coasidered and/or
the application of an approximation which results in a
simplification of the dynamics appropriate to a more
realistic interaction. Examples of the former case are
afforded by the application of soft spherical or rigid

ovaloid models to the descriptiomn of atom~-linear molecule in-
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teractions. As previously moted in Chapter 4, the
"projection" operator techmniques, when used in conjunction
with the rigid ovaloid models, introduce am approximate
simplification in the rigorous impulsive dynamics
characterized by the neglect of "chattering." The ternm
"chattering" can be generalized to soft nonspherical interac-
tions in which case it denotes collisions in which the
strongly repulsive region of the interacticn is encountered
more than once. Omne expects that the application of
projection operator technigues to Kihara models neglects
chattering as defined in this more general sense. In addi-
tion, the form of the differential cross section embodied in
Egq. (5.5-3) is approximate and is correct only in the sense
that it gives the appropriate limiting forms.

The usual procedure employed in model calculations is to
fit the model parameters to known experimemtal values of
transport coefficients. One then supposes that the resulting
optimal values reflect the true nature of the intermolecular
interaction. The degree to which optimal values of the model
parameters obtained by comnsideration of differeant transport
properties are commensurate allows one to make a critical
appraisal of the model. Indeed, Verlin, Hoffman, and
Matzen (64) have found that within the context of the Kihara
approach (employing a Lennard-Jones 6-12 interaction) the

values of the optimal model parameters appropriate to the
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thermal conductivity and shear viscosity differ widely. This
is unsatisfying since the same intermolecular potential must
describe both kinds of transport.

A more stringent test of the Kihara model approach is
afforded by fitting the Kihara effective cross sections to
the effective cross sectioans obtained from the Monte Carlo
calculations. Here, the model parameters can be compared d4i-
rectly to the realistic potential surfaces. The following
three figures (Figs. 5.5, 5.6, and 5.7) on the right half
show the realistic potential surfaces and on the left half
show spherocylindrical Kihara interactions. In this wvork,
has been chosen to be of a Lennard-Jdones 6-12 form. The en-
ergy contours are in hartree units (1 hariree = 27.212 eV).

Values of Ar-CO, effective cross sections appropriate

2
for comparison with the Monte Carlo control variate results
for Ar-COZ(I), Ar-COZ(II), and Ar-N2 at 300°K have beem ob-
tained by fitting Kihara model results (spherocylinder core)
to classical trajectory results. These quantities appear in
Tables 5.13, 5.14, and 5. 15.

The quantities ijkl 8 which are collected in

q 71 ’ AG(PqStlB)OLB' 1 1
Table 5.16, give the number of standard deviations of the
Monte Carlo estimate (G(ijklls) ) which are contained in the
pgst B oB
magnitude of the difference between the Kihara model and
classical trajectory values. Thus, if Ag@Jk1;B) is less
pgst B aB

than unity, the Kihara model value of g (iJkl B lies within
pgst B aB
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Table 5.13. Values of Effective Cross Sections: Comparison
of Classical Trajectcry and Kihara Model
Results for Ar-COz(I)

Cross Classical Kihara Perceat

section?® ) Trajectoryb ModelC€ Deviation

6100015 26.2(1.0) 26.1 -0.4
(1000 08

6110915 23.2(2.3) 21.1 -9.1
1100'8’
6150015 103.5 (3. 4) 90.7 “12.4
(1200 08 |

6(350015) 5045 (4.2) 40.9 -19.0
0200'g’ |
10008

61200 g 6 |
120 oap 0.958 (14, 2) 1.09 13.8

61200 8,
1000 |8 o8
10108,

6‘1200' 1
10108 B
1001 (B

612008 08
1200|s -3.13(11.0) -4,28 36.8
(1001 a8 |

2 A1l cross sections given in units of sguared angstroms.
b percent relative standard deviation apgears in parentheses.

€ potential Parameters: T* = 1.60, r, = 3.07%, R = 1.193.
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Table 5.13. ' (ccntinued)

Cross Classical Kihara Perceat
section Trajectory Model Deviation
G(l;l)as- 82.5(j.0) 82.1 -0.4
G([Y](Z)'[Y](Z))as 190.7 (1. 5) 209.9 1041

6 (v2,0)
2 2. ¢ “22.9(4.2) -44,8 95.6
G(Q IY )aB
G(xggxx[g](z))as -9,17(10.9) -8.30 -9.5
- 2 9.17(10.9 8.30 -9.,5




Table 5.14,

264

Values of Effective Cross Sections:
of Classical Trajectcry and Kihara Model
Results for Ar-COz(II)

Comparison

Cross Classical b Kihara Perceat
section? Trajectory ModelC Deviation
1000 |8 }
G(IOOOI 26.2(1.0) 25.8 1.5
11008 -
611008 23.7(2.1) 20,9 11.8
12°°|B €€.2(3.0) 74,2 -13.9
6(;1200 08
0200 -16
G(ozool ) y 3642(3.6) 30.5 16. 4
IOOOIB
(1200
of 0.554 (24.6) 0.920 66.1
lOOOl |
(1200 8 g
SN
o . -
1200'6 2.12(7.7) 2.56 20.8
(1010 a8
1001| )
(1200
op -3.52(9.8 -4.10 15.8
G ( ZOOIB ~( ) |
1001'g’ .

4 All cross sections given in units of squared angstroams.

b percent relative standard deviation appears in parentheses.

c = 1,60, £,

= 3,078, R = 0.9388.
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Table 5.14., (continued)

Cross Classical Kihara Percent
section Tra jectory Model Deviation
Gly;y) 82.6(1.0) 81.3 -1.5
G([l](Z);[l](Z))aB 192.5(1.6) 201. 6 4.7

6(v?,0%) ]
2 2@ -28.9(3.6) -35,0 21.1
G(R™,v7)
oB
clye:yxa1 (2
Yo yx il 0B -9,15(9.9) ~8,33 -9,0
9.15(5.9) 8.33 -9,0

styxig) B e
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-

Values of Effective Cross Sections:

Comparison

of Classical Trajectcry and Kihara Model

Results for Arc-N

2
Cross Classical Kihara Percent
section Trajectoryb Model® Deviation
G('OOOIB) 29,1(1.8) 28.3 -2.8
1000
oB
1010IB 39.7(5.9) 0. 4 1.8
1o1o
o.B
'°°'|3 35.0(8.6) 37.9 8.3
(1001
oB
"°°|B 28.1(3.4) 25.8 842
(1100
0B
(1200 B -
1200| 53,8 (8.6) 5049 -5.4
of
02008,
G(0200| . 7.12(2.7) 10. 4 46.1
G(l’l)as 74.4 (1.8) 72,2 -2.8
G(Lll(z)ill](z))as 159.9(3.4) 166.6 4.2
G(Y 02 )ag 6 7 12 174,0
G(Q Y ) B 4, 8(30 ) - «8 .
sygixxigl ‘)
x Ix ( ) ‘8.05(6.1) ‘9.52 18.3
G(yx [£] 'lg)as 8.05(6.1) 9,52 18.3
a

C

All cross sections given in units of squared angstronms.,

*
T

= 3.50, T,

o o
= 3.49 A, R = 0.269 A,

b percent relative standard deviation aprears in pareatheses.
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Table 5.16. TrCeviations of Classical Trajectory and Kihara

Model Kesults

Cross
Section
Deviation

-N
Ar 2

to Kihara

Ar-COz(I) Ar-CCz(II)

to Kihara to Kihara

-

‘DG

IOOOIB)

1000°'8 B

1100

IB
1100

A G (
oeB

1200'6)

A6 (13008

o

0200

Ae ‘ozoo' )

oB
1000
A6 (1500

1200|B
1000'B

15)
of
AG(
af
1010
1200 B

1010'B

A6 (150015

AG (
ofB

1001
1200

1200
1001

IB)
of
1£)

AG (

AG (

AG (l;l)ue

-0.’40 - 1.5 —1.6
-4,0

- 0063

12.5

12,7

10. 8

1.6

—0.“0 "1.5 —1.6

Deviations are
Carlo standard

expressed in terms of the number of Monte
deviations.
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Cross Ar=CG_ (I) Ar=-CO_(I1I) Ar-Nz
Section 2 2
Deviation to Kihara to Kihara to Kihara
(2), (2) '
AG ([y] ;[l] )uB 6.7 2.9 1.2
Ac (YZ'QZ)O‘B 22,8 5,9 47.0
2 2 . . .
AG (Q7,y )aAB
o (2)
AG (yQ:yx[Q] )
L35 X% 02 op ~ 0,87 ~0.91 3.0

26 (xxi21 ¥ iye)
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one standard deviation of the "realistic®™ Moate Carlo esti-
mate.

One can consider errors in the Kihara model approach as
having one or more of the following four sources. The first
is the neglect of "chattering." This point has been dis-
cussed extensively with regard to rigid ovaloids in Section
4.5. A second source is embodied in the ad hoc assumption of
a factorized form for the differential cross section as is
implied by Egs. (5.5-1) and (5.5-3). Third, the "realistic"
potential surfaces are only approximated by a Kihara poten-
tial form, and finally, the statistical nature of Monte Carlo
methodology introduces a source of random errors. Of these
four sources of error, only the last can be gquantitively
appraised. To see this, ome recalls from statistical theory
that an isolated observation of a quantity subject to ranrdon
fluctuations has a probability of 0.843 of being within one
standard deviation of its mean value. Thus, randcm error
contributes on the order of one standard deviation to

(ljgélg)aﬁ‘

If one averages the values of AG(lJEt'g’ 5 "columnwise"

yith respect to Table 5.16, one finds that the Ar-COZ(I) data
gives 6.9, the Ar-COz(II) data gives 3.1 and the Ar-Nz data
gives 8.7. This "average deviation™ can be interpreted as a
crude measure of.the closeness of the "fit" between the

Kihara surface and the "realistic" surface. It is evident
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that the Ar-COZ(II) interaction is best approximated by a
Kihara interaction. This conélusion is also indicated by the
close correspondence of the shapes of the Kihara and
Ar-COZ(II) equipotential contours shown in Fig. 5.6.

Digressing briefly, one should recall that in Chapter 4,
it was observed that some rigid ellipsoid-rigid sphere effec-
tive cross sections are more strongly influenced by the

neglect of multiple collisions than others. This is summa-
past B’ oB
propriate to the comparison of Monte Carlo aand projection op-

rized in Table 5.17 which presents values of AG( ap-
erator cross sections based on rigid ellipsoid-rigid sphere
interactions. (The corresponding effective cross section
values were given previously in Section 4.6.) It is evident
2 2

that the energy exchange cross sections, G (y and

| Yag
G(Qz,y%ae, are the ones most strongly affected (always

overestimated) by the neglect of chattering. The cross sec-

1010 1200 ,8 0200 B 1200 B
thHS, 6(1200‘ )GB' 6(1010' )0!.8' G(OZOO ) B' and 0(1200 B)OLB

are also affected, though not as strongly as the energy ex-
change cross sections. In addition, the energy exchaage
cross sections do not depend on angular momentum polarization
and are thus likely to be more sensitive to the gross
anisotropy of the potential surfice rather than its detailed
nature. The other "chattering sensitive cross sections" do

depend on amngular momentum polarization.
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Table 5.17. Deviations Between Monte Carlo Estimates and
Projection Operator Values of Effective Collision
Cross Sectioas for Hard Sphere-Hard Ellipsoid

L Models® o
Cross Semiminor Semiminor ~Semiminor

Section axis g axis = axis g
Difference 4.02 A 3.06 % 2,12 A
10008 - -

AG(IOOO'B)aB 1.8 0.63 5.3
11008

AG(I]OOIB)aB 0.97 0.061 4.1
120048

AG(1200|6)a 1.3 3.6 10.5
0200 |8 " |

AG(OZOOIB)QB 0.87 6. 15.0
1000 B

AG(mools)mB

AG(IZOOIB) ' -107 -ZQu -5.3
1000'R a8
1010 B

AG(IzOOIB)GB 0.96 6.7 25.9

AG (12008, ) ’ :
1010'R B
10018

AG(1200|B)mB

AG(leOIB) -1'u -0081 -208
1001°'8 B

4 sphere radius = 1.90505 A ; ellipsoid semimajor axis =

4,23304 %

b peviations are expressed in terms of the number of Monte
Carlo stamdard deviationms.
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Table 5.17. (continued)
Cross Semiminor Semiminor Semiminor
Section axis = axis s axis =
pDifference 4,02 § 3.06 A 2.12 }
26 (1y1 2 5 1y1 ) 1.2 0.43 -0.19
26(v2,0%) o
AG(92,Y2) 0,60 9.8 38.9
o.B
26 (x@iyx191?)y o
& 0.89 -1.2 -0.42

a6 (yx121 2 5y
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Continuing to digress, it is of interest to speculate as
to the reason why the energy exchange effective cross sec-
tions are strongly affected by the neglect of chattering. 1If
one visualizes a collision between a rigid ellipsoid (i.e.

diatom) and a rigid sphere (i.e. atom), chattering caa occur

if nearly all of the relative tramnslational energy is trans-
ferred by the initial impulse to the rotational degrees of
freedom of the rotor. In such a case, the atom "hovers"
within the spherical volume swept out by the rotor and re-
ceives a second impulse. When this occurs, much of the ener-
gy originally tranéferred to rotation is transferred back to
translation. Thus, the neglect of chattering overestimates
the rate at which rotational and tramslational energies caa
be exchanged and thus leads to overestimation of the energy
exchange effective cross sectioas.

Returning to the previous discussion, one notes that the
Kihara methodology systematically overestimates the energy
exchange cross sections relative to "realistic" Monte Carlo
estimates. In additiom, the cross section G(gggglg) is
overestimated. It seems likely that this behavior is due to
the neglect of chattering in the Kihara approach.

In this work, the spherical potential, ¢$(s), used to
construct the Kihara surface was chosen as the usual Lennard-

Jones 6-12 interaction. This choice of ((s) was convenient

due to the availability of the necessary omega integrals.
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However, it is evident from Figs. 5.5, 5.6, and 5.7 that the
Lennard-Jones-Kihara potential surfaces have more repulsive
cores and nmuch simpler well structure than the corresponding
“realistic" surfaces. It appears, however, that these dif~-
ferences are not too critical since it is possible to attri-
bute a significant part of the deviation in the results to
the neglect of chattering. Also, and perhaps more important-
ly, the Kihara values of the effective collision cross sec-
tions which give rise to the Senftleben-Beenakker effects are
reasonably close to the Monte Carlo values.

| It is of interest, however, to investigate how one might
go about obtaining the "best fit" of a Kihara potential to a
"realistic" potential surface. To begin, one should note
that any potential surface appropriate to an atom-diatom in-

teraction can be written as a series of Legendre polynomials,

v= ) v.(r)P, (cos8) (5. 5= 14)
im(Q J J
J
If £ is defined as the vector distance between molecular
centers and e is defined as a unit vector parallel to the in-
ternuclear axis, then r is |r| and ¢ is arc cos(r"g-é). One
is at liberty to define a reference convex surface, Op v de-
scribed by a supporting function, h(z), and a scale factor,

p SO that r has the fornm,

r = p[(h-zh')k+h'e] (5.5-15)
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't bas its endpoint on ¢, and that k

h

is the unit vector normal to oL at that point. The quantity

z is defined as k-é. This immediately yields,

Here, one notes that p~

r = pl(h-zh')%+2zh ' (h-zh')+h' %)™ (5.5-16)

(h-zh') z+h' (5.5-17)

cosb = -
[ (h-zh')%+2zh' (h-zh')+h'%]7?

where h and h' (derivative of h) are understood to be func-
tions of cosz.
Now, the "realistic" potemtial can be writtem in the al-
ternate forn,
o0
V= ] w.(p)P.(cosd) . (5.5-18)
=0 J J
where ¢ = arc cos z. It is clear that the Kihara poteatial

can be identified as wo(p). From this, one obtains,

L vs(r(p,0))P (cosblp,0))  (5.5-19)

1
wy(p) = %[d(coss)
-1 j=0

This integral can be evaluated via Gauss-Legendre quadrature.
Finally, it should be noted that for "best" results,
should be chosen so as to closely correspond with aa

equipotential surface of the "realistic" potential.
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In conclusion, it is interesting to note that the IOS

and Kihara calculations show interesting correspondences.
00,8 2
00'g)as Yo
are strongly overestimated relative to the Moante Carlo

2)

and G(92,y a8

In particular, values of G(og ’ G(Yziﬂ

results. The appropriate values of 13k1 B appear in
pprop AG(pqst B) 8 PP

Table 5.18. It will be left to future study to determine how

or if dynamical approximations characteristic of the Kihara

and IOS methodologies are related.

5.6. Some Proposals for Future Work

It is commonly the case in the course of scholarly re-
search for omne to produce more gquestions than one is able to
answer. This work falls in that category. However, out of
the many possible proposals for future work that could be put
forward, the author will give only the fcllowing three.
First, the lack of CC and CS calculations are obvious gaps
that need f£filling. This work is straightforward amnd can be
pursued as resources are made available. Second, it would be
interesting to know if factorization formulae for the I0S
generalized phenomenological cross sections can be developed.
Although this subject is not the province of the author, it
is his opinion that such formulae hold the p:omiée of produ-
cing more economical computation methods which would allow

more ambitious problems to be attacked. Third, it appears to
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Table 5.18. Deviations Between Monte Carlo Estimates and IOS
Values of the Effective Collision Cross Section
for the Pattengill et al. Ar-N, Potential Surface

2
Cross Ar-N, Classical Ar-N2 Classical
Section Trajectory Trajectory
Deviation? to Kihara to I0S
1000 B
46 (30008 -1.6 1.9
of
1010 B
86 (1910!8) 0.30 1.5
o
1001 (B
AG (1907 0.97 4.9
o
0200 B
AG(OzoOIB " 12.5 108.2
86 (1y1 ) :1y1 2 1.2 -2.9
AG (Y Q ) B
47.0 100.5

A6 (02 'Y 2 B

@ Dpeviations are expressed in terms of the number of Monte
Carlo standard deviations.
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the author that the IOS and Kihara model methodologies are
related in some fundamental way. It would be satisfying to
know the nature and extent of such a connection. It is the
author's opinion that this connection is involved with the
neglect of chattering. It would then be interesting to try
to devise some means of explicitly treéting multiple impulse
collisions. If this could be achieved, these methodologies
(the I0S and Kihara model) might even become of practical use
in an engineering context since grossly unrealistic rigid

rough sphere models are currently applied for such purgoses.
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*And further, by these my son, be admonished:
of making many books there is no end;
and much study is a weariness of the flesh."

Ecc. 12:12
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8. APPENDIX A: IRREDUCIBLE TENSORS

The irreducible tensors used in this work can be defined
by considering a Taylor series expansion of a general func-

tion, G, of a three dimensiomnal vector, x

(%) I9936(X) | o0 (8-1)

e 8

G(x) =
3=0
Clearly, the polyads, (g)j, form a nonorthogonal complete

basis under the norm,
(G,G') = [dx G(x)G(x") (8-2)

If one orthogonalizes the polyads under the above norm, ome

obtains the irreducible tensors

+{n/2} (=1) S (x) P25 (U) 53,28
s=1 3 (2(n-j)+1)
j=1

x1 ™ = (0 (8-3)

Here, the notatioﬁ'#Ai means "the tensor formed by the sum of
all distinguishable perturbations of the tensor indices of A"
(e.g. Txyy¥ = xyy+yxy+yyx) and the notation {n/2} means "the
greatest integer contaimed in n/2." If one "traces" any pair
of indices of [5]“” it follows directly from Eq. (8-3) that
the result is zero. Thus, [!](n) is the n-rank "traceless

and symmetric" component (g)n.
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It can be shown by direct substitution that Igj(n) obeys
the following differential equation,

2 ~3§Ix[§1 ® o ® @

which is immediately recogniiable as the angular part of the

Helmholtz equation. Thus, the cartesian compomnents of [!](n)

are linear combinations of the spherical harmonics, Yg(i), Yg']
(X), e=e Y;n(i) multiplied by x®. Like the spherical har-
monics, the tensors, [gl(n), form irreducible representations
of the rotation group, 0+(3), which leads to the designation
of the [g](n) as irreducible tensors.

The spherical harmonics have the conventional orthonor-

mal definition,

m+| |

i
mozy 2 (2n)! [2n+] -mp ] %
YU3) = (-1) ‘2 “n)l 2;] §+I$B::] el™ (sing) Im!

n-!ml -
¢ } s n-|m|-2s —§ (6-5)
)

n-|m|

+ (=1) " (cosh)

(cos6) S S
s=1 2 s!(n-lml-ZS)!jg](2(n-j)+1

where 6 and ¢ are the angles of X (is€., X = Isinpcosp+Jsing
sin¢+Kcosf). Also, the associated Legendre function,
Pém)(cose), has been explicitly written as a series. Now, if
one evaluates the "zz...z" cartesian comgonent of [;](n), one

finds,
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e 2AN S
(n) _ _n{nl!)“2 o {2 0 = -
(%) zzmz = % 'Tix?)z_['z——nﬂ_-_, Yo (0 876)
In evaluating [g]ég) z¢ One nust note that K.X=cosp and that

(x) P"25(y) St has n1/2%s1(n-2s)! terms.
It follows from Egq. (8-3) that the scalar product

(x] Morx) M s,

: 2{n/2}

: (-1)S (2n-2s) !
(2n) !

s=0 s!(n-2s) ! (n-s)!

(n1) 22"
= T¢n it (8=7)

One can define a standard spherical component, [;];, of the
irreducible tensor, [x](P), such that
n ¥*
n
=l MR ™ = P g? (8-8)
m=-n m
where it follows that [g]; can be given the explicit form in

terms of spherical harmonics,

: n} %
(x]2 = 23/2 W%E“(‘zn;‘z’)’!’-:l  YR(z) | (8-9)

One can show that Eg. (8-7) is satisfied by the above defini-
*
tion of [5]; if one notes that Yﬁ (X) eguals (-1)m2;m(i) and

makes use of the addition theorem for spherical harmonics
n
(i=e., 20ti24m = 7 (=1)"™(F) Y (F)) .
n=-n n n
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If one uses the standard definition of the Wigner 3j co-
efficients and the expression for the integration of three
spherical harmonics as given by Edmonds(60), it is possible

to obtain an expression for a spherical component, [z]g , in

0
terns of the cartesian components, x, y, and z, ‘
J-s
J e Tead
(x], = sil ;. EW@,s)) X _: Jns J-s+1
0 ns=-J+s ﬁ s ns..]
1 J-s J-s+1 _iy r 1 J~s J=s+1| _ (I J=s J-s+1
I ng “Ng_y Aji‘[_'l g Mg | By "hgoy
b oz 1 J=-s J~-s+1
where,
fgs) = |2@3m2s)t [ gt 1 g-s gesei)| 7T L
’ (23-25+2) 1 T-53! {lo o o (8=11)
In conclusion, some useful identities are listed.
[5](0) = 1 (8-12)
(1)
[x] =X (8-13)
(x]¢?) = xx - %xzy (8- 14)
0) 1
[xy1¢®) = L .. 8-15
RV (5=19)
IR i/% xxy (8-16)
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(91 2 = Flxyryo) - 3xy U (8=17)
(xty) (212 i/%' (x%yy-yy*x) (8-19)
(2),(3) _ 1 v
[x[y]l ") = 3(Xyy+yxytyyx) - Jg (xU+|x]+Ux) - (8-20)
2
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9. APPENDIX B: ISOTROPIC TENSORS

An isotropic tensor, by defipition, is totally symmetric
with respect to O+(3) and thus must consist of direct prod-
ucts of the unit tensor, U, and the Levi-Civita density, € .
Since this admits a great many possibilities, the present
discussion will be limited to the presentation of results
which are useful within the scope of this work.

Two particularly useful identities are,

fdf(i)zn = %73:%777’#(U)2n1 in (9-1)
and,

nf3ﬂ3/2

(n) 2n -
=T A X (9-2)

where an explicit expression for A(n) follows immediately

from Eg. (8-3) via Eg. (9-1)-.

{n/2} s

(n) 1 (=1)

A = — tl == l:}:+ )

(n!—-)-2 ggfj . s=1 Zss![(n—s)llzji](2(n-j)+1)
- (9-3)
2w || |wS

in-2s

Here, is constructed by an n-fold nesting of U's (i.e.

= § § -8 ). Some specific examples are,

1-2n 1,2n "2,2n-1 "n,n-1



292

a0 o (9-4)

2t =y (9-5)
(2) '» -
4 7((_9) +U) - (9-6)

A(l:l) =LEJ (9-7)
2B < Tl - 3 e (9-8)
7“ H U 3

Cooper(46) has given explicit expressions for A(3), A(]'3),

22:2) apg a(2:1),

In Chapter 3, the inverse collis%on operator is written
in terms of tensors which are isotropic with respect to the
group of two dimensional rotations about the direction of the

field. Following Cooper (46) one can define the linearly in-

dependent tensors,

(+) = (F)9-m (2) (2) ,- g-
B "' (q) = (k)9 [‘ | [ (2) -,q-m
" ‘m (k) (9-9)

(=) ~\ g=m
B\ (q) = ()9 . l l(Z) (2) (yg-m
m (@) (k) v L () (9-10)
l:m }

vhere k is a unit vector parallel to the field, H, and

H(z) =0 - kk (9-11)
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y = -kxy (9-12)

The tensors B£+)(q) and Bé')(q) can be used to coastruct
tensors ﬁé+)(q) and ﬁé')(g) which are symmetric and traceless

on the first and last g indices.

ﬁ:fi” (@) = (2)] (2) (9-13)
g-m | |- = g-my _

qu[I(ﬁ) l:EEg I (h) t - trace terms]

8-)(q) =
" - (2) 1 (2) 7 q- (9-14)
qu[ (f) 9 my- liil (A)T™ - trace terms]

l;m? J
where,
_ 29 (g+m) 1 (g-m) !

Nem = m! (2q) ! (9-15)

The tensors defined in Egs. (9-13) and (9-14) satisfy the re-

latiouns,
(+) (+) _ o (+)
By (@& BV (@ =B T8 (9-16)
Bl g 87 @ = 876, (9-17)
§é+)(q)g ﬁéT)(q) = ﬁé')émm. (9-18)

Using these relations, Matzen (45) has defined a linearly in-

dependent set of tensors here denoted by Véq), as follows,



294

y (@) :j; B (@) + 87 @) (9-19)
where,
9.,
n=0 m==q

(q)th = ?mﬁ( ) (q) = -? imVrf‘q)

m=1 . n=-q (9-21)

Specific examples of V;q) pertinent to this work are,

8 o) =1 (9-22)
8 (), = g (9-23)
§é+)(l) = kk (9-24)
B\ () =y (9- 25)

(+) 2 :
(2) = —(‘ !! ' lLJ( )I(z) (2)) (9-26)

B\ (2) = Laru'Pk + g[R)(2) LEJ‘Z’E + lﬁﬁl(z))(9-27)

(2) _ 1

ig(Z)-

k

~

B{* (2) = 2(RRRK - JRRyY + 7' Pg3y (9-28)

(9-29)
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10. APPENDIX C: HARD SPHERE-HARD ELLIPSOID ALGORITHM

An efficient hard sphere-hard ellipsoid trajectory algo-
rithm was developed by this worker only after a considerable
nunber of approaches were tried and discarded. For this
reason, this appendix is included here so that future vorkers
can benefit from the experience of this author.

A complete description of a "hard" interaction is ob-
tained if one locates both temporally and spatially the
"point of impact" (or "points of impact" for chattering
collisions). The most efficient algorithm foumnd by the
author for doing this is summarized in the following steps:

1. The atom (sphere) and molecule (ellipsoid) are
advanced via free f£light dynamics from the initial configura-
tion to a configuration in which the center of the sphere is
the distance of ro+b from the center of the ellipsoid.

2. The interval necessary for the atom to traverse a
"collision" sphere of radius ro+b about the center of the
molecule is calculated under the assumption that no interac-
tion occurs (i.e. the sphere and ellipsoid are able to
“"penetrate" each other).

3. The time interval in step 2 is divided into an inte-
gral number of subintervals. A convenient number was found
to be 50.

4. The atom is advanced via free flight dynamics
through the first subinterval.

5. Using an appropriate criterion (this will be dis-
cussed later) the algorithm checks to determine if an impact
occurs during this interval. If none occurs the atom is
advanced to the second interval and step 5 is repeated. 1If
the atom is advanced outside of the collision sphere (i.e.
after 50 repetitions with no impact) it is obvious that no
collision has occurred. Thus, the postcollisional values of
the dynamical parameters follow trivially frcm the
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precollisional values.

6. If an impact is found to occur, the subinterval is
partitioned (four partitions are found to be optimal) and the
searching process is repeated on these finer divisions.

7. When the impact point is determined to within a
predefined tolerance, postimpact values of the dynamical pa-
rameters are determined from the preimpact values.

8. The interval necessary for the atom to escape fron
the collision sphere after impact is calculated via free
flight dynamics assuming no subsequent impacts.

9. This new interval is divided into subintervals.
(Twenty was found to be appropriate.) The entire process is
repeated to check for subsequent or "chattering" impacts.

10. The process is repeated until the atom finally
escapes from the collision sphere.

The above procedure is easily generalized to more
complicated "hard" interactions. The criterion used in step
5 can take several forms but basically follows frcm the
nature of the geometry of the sphere and ellipsoid when in
contact. Defining k as the unit vector normal to the
surfaces at the point of contact, € as the unit vector along
the symmetry axis of the ellipsoid, and T as the unit vector
parallel to the relative position vector, r, between the
sphere and ellipsoid centers, one finds that k-e is an ana-
lytic function of I-e when the sphere and ellipsoid are in
contact. Using this fact, at any point along the trajectory,
one can calculate a hypothetical value of k-e from the cur-
rent value of r-é. Now, it is also true that the distance,
%, between the centers of the sphere and ellipsoid when in

contact is aa analytic function of k- e. ' Thus, a hypothetical
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value of 2 can be computed from the value of K-&. If one
compares this computed value of 1 to the current value of
{zl, one finds |rc}>1 implies that there is no contact, |c|<x,
implies that the sphere and ellipsoid have penetrated each
other, and jr]=1 implies that the surfaces just touch. Thus,
an impact point can be located using the preceding condi-~

tions.,
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11. APPENDIX D: TABLES OF NUMERICAL DATA APPROPRLIATE
TO THE SPHERE-SPHEROCYLINDER KIHARA

CROSS SECTIONS
The scalar collision integral appropriate to a sphere-
spherocyliander Kihara interaction can be written in terms of
the quantities given explicitly in Eq. (5.5-7) through
(5.5-13). These can be decomposed into the dimensionless

quantities, iéil Y(i) Téi'j), and G where,

() 2 =(i) 2 (4)
i) _ —=(1i R —(i ' -
X =r Ixg™ + r_ Xc ] (11-1)
" 12 (4] |
plied) o 12 703 (11-2)
SC
G =123, (11-3)
. O sScC

These quantities and necessary omega integrals are given in

the following tables as functions of n and T* (reduced temp-

erature).

Table 11.1. Lennard-Jones 6-12 Chapman Cowling Omega
Iantegrals

(1, N*x (4,2)% (2,2)%  (1,3)%  (2,3)*x  (3,3)*
T Q 0 0 Q Q Q

0.05 5.074 4.506 5.163 4.125 4.734 4.755
0.10 4.012 3.552 4.093 3.239 3.759 3.750
0.15 3.481 3.066 3.588 2.774 3.295 3.235
0.20 3.130 2.731 3.267 2.439 3.001 2.881
0.25 2.865 2.469 3.034 2.176 2.775 2.613
0.30 2.649 2. 256 2.844 1.966 2.581 2.400
0.35 2.468 2.080 2.680 1.799 2.409 24225
0.40 2.314 1.932 2.533 1.6€5 2,257 2.079
0.45 2.181 1.810 2.402 1.558 2.124 1.958
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Table 11.1. (coatinued)

T* 9(111)* 9(112)* 9(212)* 9(113)* 9(213)* Q(J'3)*
0.50 2.066 1.7G67 2.286 1.469 2007 1.852
0.55 1.965 1.618 2.182 1397 1-905 1.762
0.60 1.876 1. 545 2.085 1.336 1.816 1e 682
0.65 1.798 1. 481 1.999 1.285 1.736 1.613
D.70 1.729 1.425 1.922 1.242 1.668 1e 534
0.75 1.667 1.375 1.854 1.205 1.607 1.501
0.80 1.610 1332 1792 1.172 1.552 1e 455
0.85 1.561 1.293 1.736 1.144 1.505 1.412
0.90 1.518 1. 260 1.685 1.118 1.462 1374
0.95 1.477 1. 231 1637 1.096 1.424 1. 340
1.00 1.440 1. 204 1.593 1.076 1.389 1.309
1.05 1.406 1. 180 1. 554 1.058 1358 1.281
1.10 1.375 1. 158 1.518 1.0041 1.330 1.255
1.15 1.347 1« 138 1.4€5 1.027 1.305 1.232
1.20 1.320 1. 120 1. 454 1.013 1.281 1.211
1.25 1.295 1. 103 1427 1.009 1.260 1« 191
1.30 1.272 1.087 1. 402 0.9895 1.240 1.173
1.35 1.252 1. 072 1.378 0.9789 1.222 1. 157
1.40 1.233 1.058 1.356 0.9691 1.205 1. 141
1.45 1.216 1. 046 1.335 0.9599 1.189 1.127
1.50 1.199 1.035 1.316 0.9514 1.175 1.113
1.55 1. 183 1.024 1.297 0.9430 1.161 1e 101
1.60 1.168 1.014 1«280 0.9359 1.149 1.089
1.65 1154 1. 005 1.264 0.9288 1.137 1.078
1«70 1.1741 0.9958 1.249 0.9221 1.126 1.068
1.75 1.128 0.9870 1.235 0.9158 1.116 1.053
1.80 1.116 0.9790 1.222 0.9098 1.106 1.049
1.85 1.105 0.9715 1.210 -~ 0.904C 1.097 1.040
1.90 1.095 0.9644 1.198 0.8986 1.088 1.032
1.95 1.085 0.9580 1.187 0.8933 1.080 1.024
2.00 1.075 0.9513 1.176 0.8883 1.072 1.017
2.10 1.058 0.9394 1.156 0.8790 1.058 1.003
2.20 1.042 0.9285 1.138 0.8704 1.045 0.9903
2.30 1.027 0.9185 1.122 0.8625 1.033 0.5788
2.40 1.013 0.9092 1.107 0.8551 1.022 0.9683
2.50 1.001 0.9005 1.093 0.8481 1.0M11 0.9586
2.60 0.9889 0.8924 1.081 0.8417 1.002 0. 9496
2.70 0.9781 0.8849 1.069 0.8356 0.9934 0.9412
2.80 0.9681 0.7780 1.058 0.8300 0.9853 0.9334
2.90 0.9587 0.8711 1.048 0.8245 0.9778 0.9261
3.00 0.9500 0.8649 1,039 0.8193 0.9706 0.5193
3.10 0.9418 0.8590 1.030 0.8145 0.9640 0.9129
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Table 11.1. {continued)

. Q('lr1)"f Q(1.2)* Q(2,2)"‘ Q(1.3)"‘ 9(2:3)* 9(3,3)*
T

3.20 093471 0.&534 1.022 0.8098 0.9576 0.90068
3.30 0.9267 0.8481 1.014 0.8054 0.9517 0.9010
3.40 0.9198 0.€430 1.007 0.8011 0.9460 0.8956
3.50 0.9132 0.8382 0.9998 0.7971 0.9406 0.8903
3.60 0.9069 0.8336 0.9932 0.7932 0.9355 0.8854
3.70 0.9009 0.8292 0.9870 0.7894 0.9306 0.E807
3.80 0.8952 0.8250 0.9810 0.7858 0.9260 0.&761
3.90 0.8898 0.8209 0.9754 0.7823 0.9215 0.8718
4.00 0.8846 0.8170 0.9700 0.7790 0.9172 0.8677
4.10 0.8797 0.8133 0.9649 0.7757 0.9131 0.8637
4.20 0.8748 0.8097 0.9600 0.7726 0.9092 0.8599
4.30 0.8703 0.8002 0.9552 0.7696 0.9054 0.8562
4.40 0.8659 0.8029 «2507 0.76€66 0.9018 0.8527
4.50 0.8617 0.7996 0.9463 0.7638 0.8982 0.8493
4.60 0.857€ 0.7965 0.9421 0.7614 0.8948 0.8460
4.70 0.8537 0.7935 0.9381 0.7586 0.8915 0.8u28
4.80 0.8499 0.7905 0.9342 0.7557 0.8880 0.8397
4.90 0.8463 0.7876 0.9304 0.7532 0.8853 0.8367
5.00 0.8427 0.7849 0.9268 0.7507 0.8820 0.8228
5.10 0.8393 0.7822 0.9233 0.7483 0.8794 0.8310
5.20 0.8360 0.7796 0.9199 0.7460 0.8766 0.8283
5.30 0.8328 0.7770 0.9766 0.7437 0.8728 0.8256
5.40 0.8297 0.7745 0.9134 0.7414 0.8712 0.8231
5.50 0.8267 0.7721 0.9103 0.7393 0.8686 0.8205
5.60 0.8238 0.7698 0.9073 0.7372 0.8660 0.8181
5.70 0.8210 0.7675 0.9044 0.7351 0.8636 0.8157
5.80 0.8182 0.7652 0.9016 0.7331 0.8612 0.3124
5.90 0.8155 0.7630 0.8988 0.7312 0.8588 0.8111
6.00 0.8127 0.7609 0,8962 0.7291 0.8565 0.8089
6.10 0.8103 0.7568 0.8936 0.7272 0.8543 0.8068
6.20 0.8078 0.7567 0.8910 0.7253 0.8521 0.8046
6.30 0.8054 0.7547 0.8886 0.7235 0.8500 0.8026
6.40 0.8030 0.7528 0.8861 0.7217 0.8479 0.8006
6.50 0.8006 0.7508 0.8838 0.7200 0.8459 0.7986
6.60 0.7984 0.7490 0.8815 0.7182 0.8439 0.7966
6.70 047962 0.7471 0.8792 0.7165 0.8419 0.7974
6.80 0.7940 0.7453 0.8770 0.7149 0.8400 0.7929
6.90 0.7919 0.7435 0.8748 0.7132 0.8381 0.7911
7.00 0.7900 0.7418 0.8727 0.7116 0.8362 C(.7893
7-10 0.7877 0.7401 0.8707 0.7101 0.8344 0.7875
7.20 0.7857 0.7384 0.8686 0.7085 0.8326 0.785¢&
7.30 0.7838 0.7368 0.8666 0.7070 0.8309 0.7341
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Table 11.1. (continued)

(1, H*x  (1,2)%  (2,2)*% (1,3)% (2,3)% (3,3)*
Q Y] Y] f Q Q

7.40 0.782 0.7351 0.8647 0.7058 0.8292 0.7325
7.50 0.7800 0.7336 0.8628 0.7040 048275 0.7308
7.60 047782 0.7320 0.8609 0.7026 0.8258 0.7792
7.70 0.7762 0.7305 0.8591 0.7011 0.8242 0.7777
7.80 097744 0.7289 0.8573 0.6997 0.8226 0.7761
7.90 0.7727 0.7275 0.8555 0.6983 0.8210 0.7740
8.00 047710 0.7260 0.8538 0.6970 0.8195 0.7731
8.10 0.7693 0.7246 0.8521 0.6956 0.8179 0.7716
8.20 0.7677 0.7231 0.8504 0.6943 0.8164 0.7702
8.30 0.7661 3.7217 0.8488 0.6930 0.8150 0.7687
8.40 0.7645 0.7204 0.8472 0.6%917 0.8135 0.7673
8.50 0.7629 0.7190 0.8455 0.6904 ©€.8120 0.7659
8.60 0.7614 0.7177 0.8440 0.6891 0.8106 0.7645
8.70 047599 0.7164 0.8424 0.6879 0.8092 0.7632
8.80 0.7584 0.7151 0.8409 0.6867 0.8078 0.7618
8.90 0.7569 0.7138 0.8394 0.6855 0.8064 0.7005
9.00 0.7555 0.7125 0.8379 0.6843 0.8051 0.7593
9.10 0.7540 0.7113 0.8365 0.6832 0.8038 0.7598
9.20 097526 0.7100 0.8351 0.6820 0.8025 0.7567
9.30 0.7513 0.7088 0.8337 0.6809 0.8012 0.7555
9.40 0.7499 0.7076 0.8323 0.6798 0.7999 0.7543
9.50 0.7486 0.7065 0.8309 0.6786 0.7987 0.7531
9.60 0.7473 0.7053 0.8296 0.6775 0.7974 0.7519
9.70 0.7460 0.7042 0.8282 0.6765 0.7962 0.7507
9.80 0.7447 0.7030 0.8269 0.6754 0.7950 0.7495
9.90 0.7434 0.7019 0.8256 0.€743 0.7938 0.7484
10.00 0.7421 0.7008 0.8243 0.6733 0.7926 0.7472
10.20 0.7397 0.6986 0.8218 0.6712 0.7903 0.7456
10.40 0a.7373 0.6965 0.8194 0.6692 0.7881 0.7429
10.60 047350 0.6944 0.8170 0.6673 0.7859 0.7408
10.80 0.7328 0.6924 0.8147 0.6€654 0.7837 0.7387
11.00 0.7305 0.6904 0.8124 0.6635 0.7816 0.7367
11.20 0.7284 0.6885 0.8132 3.6616 0.7796 0.7347
11.40 0.7263 0.6866 0.8081 0.6598 0.7776 0.7328
11.60 0.7242 0.6848 0.8059 0.6581 0.7759 0.7309
11.80 047222 0.6829 0.8039 0.6564 0.7736 0.7290
12.00 0.7232 0.6811 0.8018 0.6547 0.7718 0.7272
12.20 0.7183 0.6794 0.7999 0.6530 0.7699 0.7254
12.40 0.7164 0.6777 0.7979 0.6514 0.7681 0.7237
12.60 0.7143 0.6760 0.7960 0.6498 0.7663 0.7220
12.80 0.7128 0.6743 0.7947 0.6482 0.7645 0.7203
13.00 0.7110 0.6727 0.7923 0.6467 0.7629 0.7187
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(continued)
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. g (e w o (1 20% (2,20% o (1,3)% (2,3)% (3,3)%
13.20 0.7092 0.6711 0.7905 0.6451 0.7611 0.7170
13.40 0.7075 0.6696 0.7887 0.6437 0.7594 0.7154
13.60 0.7058 0.6680 0.7870 0.6422 0.7578 0.7138
13.80 0.7042 0.6665 0.7853 0.6408 0.7562 0.7123
14.00 0.7026 0.6620 0.7837 0.6393 0.7546 0.7108
14.20 0.7010 0.6636 0.7820 0.6379 0.7531 0.7093
14.40 0.6994 0.6622 0.7804 0.6366 0.7515 0.7078
14.60 0.6979 0.66C7 0.7788 0.6352 0.7500 0.7064
14.80 0 6964 0.65S4 0.7772 0.6239 0.7485 0.7050
15.00 0.6949 0.6580 0.7757 0.6326 0.7471 0.7036
15.50 0.6913 0.6547 0.7719 0.6294 0.7435 0.7002
16.00 0.6878 0.6515 0.7683 0.6263 0.7401 0.6969
16.50 0.6845 0.6484 0.7649 0.6234 0.7368 0.6937
17.00 0.6812 0.6454 0.7615 0.6205 0.7336 0.6907
17.50 0.6781 0.6425 0.7583 0.6178 0.7305 0.6677
18.00 0.6751 0.6397 0.7552 0.6151 0.7275 0.6849
18.50 0.6722 0.6370 0.7522 0.6125 0.7246 0.6821
19.00 0.6694 0.6344 0.7492 0.6100 0.7218 0-6794
19.50 0.6667 0.6313 0.7464 0.6076 0.7191 0.6768
20.00 0.6641 0.6294 0.7436 0.6052 0.7164 0.6743
21.00 0.6590 0.6247 0.7383 0.6007 0.7114 0.6634
22.00 0.6543 0.6203 0.7333 0.5964 0.7065 0u.6CUE
23.00 0.6497 0.6160 0.7286 0.5923 0.7020 0.6605
24.00 0.6455 0.6120 0.7241 0.5884 0.6976 0.6563
25.00 0.6414 0.6082 0.7198 0.5647 0.6934 0.6524
26.00 0.6375 0.6045 0.7156 0.5811 0.6895 0.6486
27.00 0.6338 0.6010 0.7117 0.5778 0.6856 0.6449
28.00 0.6302 0.5976 0.7080 0.5745 0.6820 0.6415
29.00 0.6268 0.5944 0.7043 0.5714 0.6785 0.6381
30.00 0.6235 0.5913 0.7008 0.5684 0.6751 0.6349
35.00 0.6088 0.5773 0.6851 0.5549 0.6598 0.6204
40.00 0.5963 0.5654 0.6717 0.5435 0.6468 0.6081
45.00 0.5855 0.5552 0.6601 0.5335 0.6355 0.5573
50.00 0.5760 0.5461 0.6498 0.5248 0.6255 0.5€79
55.00 0.5675 0.5380 0.6406 0.5170 0.6166 0.5794
60.00 0.5598 0.5300 0.6323 0.5099 0.6085 0.5718
65.00 0.5529 0.5241 0.6248 0.5035 0.6012 0.5648
70.00 0.5465 0.5180 0.6178 0.4976 0.5944 0.5584
75.00 0.5407 0.5124 0.6114 0.4922 0.5882 0.5525
80.00 0.5352 0.5072 0.6054 0.4672 0.5824 0.5470
85.00 0.5301 0.5024 0.5998 0.4828 0.5770 0.5419
90.00 0.5254 0.4979 0.5946 0.4782 0.5797 0.537zZ
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Table 11.1. (continued)

—— -—— —

. qleN* o (1,2)% (2,2)% o (1,3) % 9(213)* Q(3o3)1l'
T

€5.00 0.5210 0.4936 0.5898 0.4741 0.5672 0.5327
100.00 0.5168 0.4897 0.5851 0.4702 0.5627 0.5285
150.00 V.4847 0.4590 0.5437 0.4407 0.5284 0.4560
200.00 0.4630 0.4383 0.5256 0.4207 0.5050 0.4740
300.00 D2.4338 0.4106 0.4931 0.3940 O0.u4736 O.luby
400.00 0.4142 0.3919 0.4711 0.3760 0.4523 0.4244
500.00 0.3995 0.3779 O0.4546 0.3626 0.4364 0C.U4094
600.00 0.3878 0.3669 0.4415 0.3519 0.4238 0.3975
700.00 0.3783 0.3578 0.4307 0.3432 0.4133 0.3877
800.00 0.3701 0.3500 0.4215 0.3357 0O.4C45 0.3794
900.00 0.3631 0.3434 0.4136 0.3293 0.3968 0.3722

1000.00 0.3569 0.3375 0.4066 0.3237 0.3901 0.3659




Table 11.2. A Compilation of Hard Spherocylinder Pro-

jection Operator Integrals

(-1) (-1 (n (1) (3)
n X X X X X

S C S C S
0.00 200000 2.00000 2.00000 2.00000 2.00000
0.01 2.00007 2.00003 1.99993 1.99997 1.99980
0.02 2.00027 2.00013 1.99973 1.99987 1.99920
0.03 2.00060 2.00030 1.99940 1.99970 1.99820
0.04 2.00107 2.00053 1.99893 1.99947 1.99680
0.05 2.00167 2.00083 1.99833 1.99917 1.9%500
0.06 2.00240 2.00120 1.99760 1.99880 1.99281
0.07 2.00327 2.00164 1.99673 1.99836 1.99022
0.08 2.00428 2.00214 1.99573 1.99786 1.98723
0.09 2.00542 2.00271 1.99460 1.99730 1.98384
0.10 2.00670 2.00335 1.99333 1.99666 1.98007
0.11 2.00811 2.00406 1.99193 1.99596 1.97530
0.12 2.00966 2.00484 1.99039 1.99518 1.97134
0.13 2.01136 2.00568 1.98872 1.99435 1.96539
0.14 2.01319 2.00660 1.98692 1.99344 1.96106
0.15 2.01516 2.00759 1.98498 1.99246 1.95534
0.16 201727 2.00865 1.98290 1.99142 1.94924
0.17 2.01953 2.00978 1.98070 1.99031 1.94275
0.18 2.02193 2.01098 1.97835 1.98912 1.93590
0.19 2.02448 2.01226 1.97568 1.98787 1.92866
0.20 2.02717 2.01361 1.97326 1.98655 1.92106
0.21 2.03002 2.01504 1.97051 1.98516 1.91309
0.22 2.03301 2.01655 1.96763 1.98370 1.90475
0.23 2.03616 2.01813 1.96461 1.98216 1.89605
0.24 2.03946 2.01979 1.96145 1.98056 1.8869¢
0.25 2.04291 2.02153 1.95816 1.97888 1.87758
0.26 204653 2.92334 1.95473 1.97713 1.86782
0.27 2.05031 2.02525 1.95116 1.97531 1.85771
0.28 2.05424 2.02723 1.94746 1.97342 1.84726
0.29 2.05835 2.02930 1.94362 1.97145 1.83646
0.30 2.06262 2.03145 1.93964 1.96940 1.82534
0.31 2.06706 2.03370 1.93552 1.96729 1.81388
0.32 2.07168 2.03603 1.93126 1.96509 1.80210
0.33 2.07647 2.03845 1.92687 1.96282 1.78999
0o 34 2.08144 2.04096 1.92233 1.96048 1.77757
0.35 2.08659 2.04357 1.31766 1.95805 1.76484
0.36 209193 2.04627 1.91284 1.95555 1.75181
0.37 2.09745 2.04907 1.90789 1.95297 1.73847
0.38 2. 10317 2.05197 1.90279 1.95031 1.72484
0.39 2.10909 2.05497 1.89756 1.94757 1.71091
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_(3) (5 _(5) (L,2)  _(3,2) _

X X X T T g

C S C SC SC sSC
2.00000 2.00000 2.00000 2.00000 2.00000 0.00000
1.99990 1.99967 1.99963 1.949999 1.99978 0.05266
1.99960 1.99867 1.99933 1.99986 1.99947 0.07076
1.99910 1499700 1.59850 1.99964 1.99891 0.08653
1.99840 1.99467 1.99733 1.939936 -1.99807 0.0%991
1.€9750 1.99168 1.%9584 1.,99900 1.99700 0.11167
1«99640 1.98803 1.99401 1.99850 1.99568 0.12226
1.99510 1.98373 1.99185 1.99804 1.99412 0.13196
1.99360 1.97877 1.98936 1.99744 1.99232 0. 14097
1.99191 1.97316 1.68654 1.99675 1.99023 0. 14939
1.99001 196691 1.98340 1.99599 1.98801 0.15732
1.98791 1.96002 1.97993 1.99515 1.98549 0.16483
1.98562 1.95250 1.97613 1,99422 1.98273 0.17196.
1.98312 1.94436 1.97201 1.,99321 1.97974 0.17875
1.98043 1.93560 1.96758 1,99212 1.97650 0.18525
1.97754 1.92623 1.96268 1,990985 1.97303 0.19147
1.97445 1.91€25 1.95775 1.,98970 1,96932 0.19744
1.97117 1.90568 1.95236 1.98836 1.96537 0.20318
1.96769 1.89453 1.94666 1.98694 1,96118 0.20869
1.96401 1.88280 1.94066 1.98544 1.95676 0.21401
1.96013 1.87051 1.93434 1.,98385 1.95209 0,21913
1.95606 1.85767 1.92773 1.98217 1.94719 0.22408
1.95179 1.84428 1.92081 1.98041 1.94206 0.22884
1.94733 1.83036 1.91360 1.97857 1.93668 0.23345
1.94268 1.81591 1.90609 1.97664 1.93107 0.23789
1.93782 1.80097 1.89829 1.,97462 1.92523 0.24219
1.93278 1.78552 1.89020 1.97252 1.91915 0,24633
1.92754 1,76960 1.88183 1,97033 1.91283 0.25033
1.92211 1.75320 1.87318 1.,96805 1.90628 0.25420
1.91649 1,73635 1.86425 1,96568 1,89950 0.25793
1.91067 1.71906 1.85505 1.96322 1.89248 0.26153
1.90467 1.70134 1.84558 1.96066 1.,88523 0.26501
1.89847 1.68321 1.83585 1.95802 1.87774 0.26836
1.89208 1.66469 1.82586 1,95%29 1,87003 0.27158
1.88551 1.64578 1.815€1 1.95246 1.86208 0.27469
1.87875 1.62650 1.80511 1.94954 1,85390 0.27768
1.87179 1.60688 1.79437 - 1,94€52 1,84549 0.28055
1.86465 1.58691 1.78338 1.,94341 1.83685 0,28331
1.85733 1.56663 1.77215 1,94020 1.82798 0.28596
1.84982 1.54605 1.76069 1.,93689 1.81888 0.288u49



Table 11.2.

(continued)

_ (=1 (=) (M) _(1) _(3)
n X X X X X
S C S [ S

0.40 2. 11521 2.05808 1.89218 1.94475 1.69571
0.41 2. 12153 2.06129 1.88666 1.94185 1.68222
0.42 2« 12806 2.06462 1.88099 1.93887 1.66746
0.43 213480 2.06805 1.87519 1.935890 1.65244
0.u44 2-.14176 2.07160 1.86924 1.93264 1.63715
0.45 2.14895 2.07526 1.86314 1.92941 1.62161
0.U6 215630 2.07905 1.85690 1.92608 1.60582
0.47 2. 16400 2.08295 1.85052 1.92267 1.58979
0.438 2.17189 2.08693 1.84399 1.91917 1.57352
0.49 2. 18002 2.09115 1.83731 1.91558 1.55702
0.50 2.18840 2.00544 1.83049 1.91190 1.54030
0.51 219703 2.09988 1.82352 1.90813 1.52337
0.52 220593 2.10445 1.81640 1.90427 1.50622
0.53 2.21510 2.10916 1.80913 1.90031 1.48887
0.54 222455 211402 1.80171 1.89626 1.47133
0.55 2.23U28 2.11904 1.7¢415 1.89211 1.45300
0.56 2.24431 2.12421 1.78€43 1.88786 1.43508
0.57 225463 2..12954 1.77856 1.883%51 1.41759
0.58 226527 2.13504 1.77054 %.87907 1.39934
0.59 2.27622 2.14071 1.76236 1.87452 1.38092
0.60 2.28750 2.714656 1.75404 1.836987 1.36236
0.61 2629912 2. 15259 1.74555 1.86511 1.34365
0.62 2.31108 2.15881 1.73692 1.86025 1.32430
0.63 232340 2.16522 1.72812 1.85528 1.30582
0.64 2.33609 217183 1.71917 1.85020 1.28072
0.65 2.34917 217865 1.71007 1.8456G1 1.26750
0. 66 2.36263 2.183569 1.70080 1.83370 1.24818
0.67 237650 2.19294 1.69138 1.83428 1.22875
0.68 2.39078 2.20043 1.68179 1.82874 1.20924
0. 69 2.40550 2.206815 1.67205 1.82309 1.18364
0.70 2.42067 221612 1.66214 1.81731 1. 10937
0.71 2.43630 2.22434 1.65207 1.81141 1.15023
0.72 2.45241 2.23283 1.64163 1.80539 1.13%242
0.73 2.46901 2.24159 1.63144 1.79924 1.11057
0.74 2.848€612 2.25063 1.62087 1.79296 1.09067
0.75 2.50377 2.2594%7 1.61014 1.78654 1.07074
0.76 2.52196 226962 1.59924 1.78000 1.05077
0.77 2.54073 227959 1.58€817 1.77331 1.03079
0.78 2.56001 2.28989 1.57€93 1.76649 1.01080
0.79 2. 58001 2.30053 1.56552 1.75952 0.99C80
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(3) (3) (3) (1,2) (3,2) _
X X X T G
C S C sSC sC SC
1.84212  1,52517 1.74900 1.93349 1.80956 - 0,29092
1.83424  1,50403 1.73709 1.928J8 1,.80001  0.29323
1.82618 1.48263  1.72497 1.92638 1.79023  0.29544
1.81793 1,46100  1.712€2 1.92267 1.78022  0,29754
1.80950 1,43914  1,70007 1,91886 1.76999  0.29954
1.80089 1.41708  1.68732 1.91494 1,75954  0.30143
1.79210 1.39483  1.67437 1,91092 1.74886  0.30322
1.78314  1.37240 1.66123 1.90679 1.73797  0.30490
1.77399 1,34983  1,64789 1.90256 1.72685  0.30648
1.76467 1.32711 1.63438 1,89821 1.71551  0.30796
1.75517 1.30428  1.62069 1.89376 1.70395  0.30934
1.74549 1,28134  1.60683 1.88519 1.69217  0.31061
1.73564 1,25831 1.59280 1.88451 1.68018  0.31179
1.72561 1,23520  1.57861 1.87971 1.66796  0.31286
1.71542  1.21205  1.56427 1.87480 1.65554  0.31384
1.70505 = 1.18885  1.54977 1.86977 1.64290  0.31471
1.69451 1.16562  1,53514 1,86462 1.63005  0.31548
1.68380 1.14239  1.52036 1.85934 1.61699  0.31616
1.67293 1.11916 1.50545 1.85395 1.60372  0.31673
1.66188 1,09596  1.49041 1,84843 1.59024  0.31721
1.65067 1.07279  1.47525 1.84278 1.57€55  0.31759
1.63930 1.04968  1.45997 1,83700 1.56266  0,31787
1.62776 1.02663  1.44458 1.83109 1.54857  0.31805
1.61606 1.00366  1.42908 1.82505 1.53427  0.31813
1.60419 0,98078  1.41348 1,81887 1.51¢77  0.31811
1.59217 0.95802  1.39779 1.81256 1.50508  0.31800
1.57998 0.93537  1.38201 1.80€11 1.49019  0.31779
1.56764 0.91286  1.36614 1.79951 1.47510  0.31748
1.55515 0.89050  1.35019 1,79278 1.45982  0.31707
1.54249 0.86830  1.33416 1.78589 1.44435  0.31656
1.52968 0.84626 1.31807 1.77886 1.42869  0.31596
1.51672  0,82441 1.30191 1.77168 1.41285  0.31526
1.50361 0.80276  1.28569 1.76434 1.39682  0.31446
1.49035 0,78131 1.26942 1,75685 1.38060  0.31357
1.47694 0.76008  1,25310 1.74920 1.36421  0.31257
1.46338 0.73907  1.23673 1.74139 1.34764  0.31144
1.44967 0,71830  1.,22033 1,73341 1.33090  0.31030
1.43582 0.69777  1.20389 1.72526 1.31399  0.30902
1.42183 0.67750  1.18741 1.71695 1.29690  0,30764
1.40769 0.65749  1,17092 1,70856 1.27965  0.30616



Table 11.2.

(continued)

_(=1) _(=1 _m _(1) _(3)
n X X X X X
s C s Cc S

0. 80 2.60068 2.31153 1.55394 1.75241 0.97080
0.81 262196 2.32291 1.54219 1.74516 0.95082
0.82 2.64393 2.33467 1.53026 1.73775 0.9308¢
0.83 2.66663 2.34685 1.51815 1.73019 0.91091
0. 84 269007 2.35945 1.50587 1.72247 0.89101
0.85 2.71429 2.37249 1.49341 1.71459 0.37116
0. 86 2.73932 2.38599 1.48077 1.70655 0.85135
0«87 2.76521 2.39998 1.467985 1.69834 0.83160
0. 88 279198 2.47447 1.45495 1.68997 0.81192
0.89 2.81968 2.42949 1.44176 1.68141 0.73232
0w 90 2.84834 2.44507 1.42839 1.67268 0.77280
0.91 2.87801 2.46123 1.41483 1.66377 0.75337
0.92 2.90£&75 2.47799 1.40109 1.65467 0.73404
0.93 2.94059 2.49540 1.38716 1.64539 0.71481
0. 94 2.97360 2.51348 1.37303 1.63591 0.69570
0.95 3.00782 2.53226 1.35871 1.62622 0.67671
0.96 3.04332 2.55179 1.34420 1.61634 0.65785
0«97 3.08017 2.57210 1.32949 1.60624 0.63913
0.98 3.11843 2.59323 1.31459 1.595¢4 0.6205%
0. 99 3.15818 2.61523 1.29949 1.58541 0.60212
1« 00 3.19950 2.63814 1.,28419 1.57466 0.53385
1.01 3.24247 2.66203 1.26868 1.56367 0.56575
1.02 3.28718 2.68694 1.,25297 1.55245 0.54782
1.03 3.33373 2.71293 1.23706 1.54099 0.53008
1«04 3.38223 2.74006 1.22093 1.52928 0451252
1.05 3.43278 2.76842 1.20460 1.51761 0.4-515
1.06 3. 48552 2.79807 1.18806 1.50508 0.47799
1.07 3.54057 2.82908 1.17130 1.49258 0.4c104
1.08 3.59808 2.86156 1.15433 1.47980 0.44430
1.09 3.65820 2.89560 1.13714 1.46673 0.42779
1.10 3.72110 2.93129 1.11973 1.45337 GC.41150
1. 11 3.76696 2.96876 1.10210 1.43971 0.39545
1Te 12 3.85599 3.00812 1.08424 1.42573 0.37964
1.13 3.92840 3.04950 1.06616 1.41143 0.30408
1. 14 4.004842 3.09307 1.04785 1.39680 0.3u4877
1. 15 4.08433 3.13897 1.02931 1.38183 0.33372
1.16 4.,16840 3.18738 1.01054 1.36€50 0.31894
1. 17 4,25694 3.23851 0.99153 1.35080 0.30444
1.18 4,35032 3.29256 0.97229 1.33473 0.23021
1. 19 4.44890 3.34977 0.95280 1.31827 0.27626
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- —

3 _(5) _(5) (L2 _(3,2)
X X X T T
C S C SC sScC SC

1.39341 0.63775 1.15440 1.69980 1.26224 0.30459
1.37900 0.61829 1.13786 1.69095 7,24467 0.30292
1.36444 0,59911 1.12131 1.68192 1.22694 0.30116
1.34975 0.58023 1.10475 1,67271 1.20905 0.29930
1.33493 0.56164 1.08819 1.66330 1.19102 0.29734
1.31997 0.54336 1.07163 1.65370 1.17284 0.29529
1.30487 0,52538 1.05507 1.64390 1.15451 0.29314
1.28965 0.50772 1.03852 1.63390 1.13605 0.29090
1.27430 0,49038 1.02197 1.62370 1.11745 0.28857
1.25882 0.47336 1.00545 1.61328 1.09872 0.28614
1.24322 0,45667 0.98894 1.60266 1.07986 0.28362
1.22749 0,44031 0.97245 1.59181 1.06089 0.28100
1.21164 0.42428 0.95599 1.58074 1,04179 0.27829
1.19567 0.40859 0.93956 1.56S544 1,02258 0.27549
1.17958 0,39323 0.92316 1.55792 1,00326 0.27259
1.16337 0,37822 0.90679 1.54615 0,98383 0.26961
1.14704 0.36354 0.89046 1.53415 0,96431 0.26653
1.13060 0.34920 0.87417 1.52189 0.94470 0.26337
1.11405 0.33521 0.85792 1.50939 0.92500 0.26011
1.09738 0.32156 0.84171 1.49663 0.90521 0.25677
1.08060 0.30825 0.82556 1.48360 0.88535 0.25333
1.06372 0,29528 0.80945 1,47031 0.86543 0.24981
1.04673 0.28264 0.79339 1.45674 0.84544 0.24621
1.02964 0,27035 0.77739 1.44289 0.82539 0.24252
1.01244 0,25840 0.76144 1,42875 0.80529 0.23874
0.99514 0,24678 0.74555 1.41433 0.78515 0.23488
0.97774 0.23549 0.72972 1.39960 0.76u498 0.23094
0.96025 0.22453 0.71395 1.38456 0,74478 0.22692
0.94266 0.,21390 0.69824 1.36921 0.72u456 0.22282
0.92497 0.20360 0.68260 1.35354 0,70433 0.21864
0.90719 0.19361 0.66701 1.33755 0.68410 0.21439
0.88932 0, 18394 0.65150 1.32121 0.66387 0.21006
0.87136 0.17459 0.63604 1.30453 0.64366 0.20565
0.85332 0.16554 0.62066 1.28750 0.623u8 0.20118
0.83519 0.15680 0.60534 1.,27C12 0,60333 0.19663
0.81697 0.14837 0.59009 1.25236 0,58323 0.19202
0.79868 0,14022 0.57491 1.23422 0,56319 0.18734
0.78030 0,13237 0.55979 1.21570 0.54321 0.18260
0.76185 0.12481 C.54475 1.19678 0.52331 0.17780
0.74332 0,11753 1.17745 0.50350 0.17294

0.52977



Table 11.2. (continued)

=) =N (M M (3)

n X X X X X
S C S C S

1. 20 4.55312 3.41040 0.93307 1.30140 0.26201
1. 21 4.66344 3.47476 0.91310 1.28411 0.24925
1.22 4.78040 3.54317 0.89287 1.26€39 0.23018
1.23 4.90457 3.61599 0.87240 1.24822 0.22343
1.24 5.03663 3.69364 0.85167 1.22958 0.21039
1.25 5.17730 3.77658 0.83068 1.21045 0.19886
1.26 5.32744 3.86534 0.80944 1.19082 0.18705
1. 27 5.48798 3.96051 0.78793 1.17066 0.17556
1.28 5.66001 4.06276 0.76616 1.14995 0.16441
1.29 5.84475 4.17287 0.74412 1.12867 0.15349
1.30 6.04363 4.29173 0.72180 1.10680 0.14311
1.31 6.25828 4.42037 0.69921 1.08430 0.13297
1.32 6.490659 4.55998 0.67634 1.06114 0.12318
1.33 6.74277 4.71194 0.65319 1.03730 0.11374
T1.34 7.01741 4.87790 0.62976 1.01274 0.1046¢
1.35 731756 5.05678 0.60603 0.98742 0.09593
1.36 7.64689 5.25988 0.58201 0.96130 0.08756
1.37 8.00974 5.48097 0.55770 0.93434 0.07956
1.38 8.41440 5.72637 0.53308 0.90649 0.07193
1.39 8.85834 6.00018 0.50816 0.87770 0.06467
1.40 9.35850 6.30744 0.48293 0.84789 0.05778
1. 41 9.92185 6.65444 0.45739 0.81702 0.05127
1.42 10.5610 7.04916 0.43154 0.78500 0.04514
1.43 112920 7.50185 0.40536 0.75174 0.03939
1.44 121361 8.02589 0.37886 0.71715 0.03402
1. 45 13.1212 8.63913 0.35202 0.68112 0.02904
1. 46 14.2858 9.35582 0.32486 0.64352 0.02445
1.U47 15.6831 10.2399 0.29735 0.60420 0.02025
1.48 173902 11.3103 . 0.26950 0.56286 0.01644
1.49 19.5219 12.6501 0.24130 0.51959 0.01303
1. 50 22,2585 14,3737 0.21274 0.47381 0.01001
1. 51 25.8983 16.6711 0.18383 0.42526 0.00738
1.52 30.9750 19.8817 0.15455 0.37346 0.00516
1.53 38.5450 24.6777 0. 12491 0.31775 0.00333
1. 54 51.0376 32.6051 0.09488 0.25713 0.00190
1.55 75.5539 48. 1839 0.064483 0.18994 0.00086
1.56 145.505 92.6823 0.03369 0.11275 0.00023
1.5 1972.55 1255.77 0.00250 0.01247 1.3(10'6)
W © L 0.00000 0.00000 0.00000




_(3) 5 _(5) _(1,2) _(3,2) _

X X X T T G

C S C SC sSC sSC
0.72472 0.11052 0.51486 1.15771 0.48380 0.16802
0.70604 0,10379 €.50002 1.13754 0.46421 0.16306
0.68729 0,09732 0.48525 1.11693 0.44475 0.15804
0.66848 0,09112 0.47054 1,09588 0.42544 0.15297
0.64959 0.08517 0.45590 1.07436 0,40628 0.14787
0.63064 0,07947 0.44133 1.,05238 0.38730 0.14272
0.61163 0,07401 0.42682 1.02991 0.36850 0.13754
0.59256 0,06880 C.41238 1.00694 0,.34991 0.13233
0.57343 0.06381 0.39800 0.98347 0,33154 0.12709
0.55424 0,05906 0.38368 0,95947 0.31341 0.12182
0.53500 0,05453 0.36943 0.93493 0,29553 0. 11654
0.51570 0.05022 0.35523 0.90985 0.27793  0.11125
0.49635 0.04612 0.34109 0.88420 0.26063 0. 10595
0.47695 0.04223 0.32701 0.85797 0.24364 0.10065
0.45751 0,03854 0.31298 0.83114 0.22698 0.09535
0.43801 0,03504 0.29901 0.80370 0.21069 0.09007
0.41848 0.03174 0.28509 0.77563 0.19477 0.08480
0.39890 0.02863 0.27122 0.74692 0,17926 0.07956
0.37928 0.02570 0.25740 0.,71754 0.16417 0.07435
0.35963 0.02295 0.2u363 0.68747 0,.14954 0.06919
0.33993 0,02037 0.22990 0.65671 0.13539 0.06408
0.32021 0.01797 0.21621 0.62522 0,12175 0.05903
0.30045 0.01572 0.20256 0.59299 0, 10664 0.05405
0.28066 0.01365 0.18895 0.55999 0.09610 0.04915
0.26085 0,01173 0.17538 0.52620 0.08416 0.04435
0.24101 0.00996 0.16184 0.49161 0,07285 0.03965
0.22114 0,00835 0.14833 0,45618 0,06220 0.03508
0.20125 0.00689 0.13485 0.41990 0,05225 0.03065
0.18134 0.00557 0.12139 0.38273 0.04303 0.02638
0.16142 0.00440 0.10796 0.34465 0.,03459 0.02228
0.14147 0.,00337 0.09455 0.30563 0,02696 0.01838
0.12152 0.00248 0.08116 0.26565 0,02019 0.01471
0.10155 0.00173 0.06779 0.,22468 0.,01431 0.01129
0.08157 0.00111 0.05443 0,18267 0,00937 0.00816
0.06158 0,00063 0.04107 0.13961 0.00542 0.00537
0.04159 0,00029 0.02773 0.09546 0,00251 0.00299
0.02159 0.00008 0.01440 0.05018 0.00069 N.,00112
0.00159 4.2(10 0.00106 0.00375 3.8(10"6) 0.00002
0.00000 0,00000 0.00000 0,00000 0.00000 0.00000
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12. APPENDIX E: SCALAR COLLISION INTEGRALS

Table 12.1. Central Potential Scalar Collision Integrals

Scalar Collision Explicit Form

Integral
}5
{y:y} (Zﬁl) yrEg2g 1/ 1)
{yiyy%) %
vy (26 05020 120w
{_yz;l} H
i
tyv3ivy?) 6%52)248“%029(1,3)*
{l;lﬂz} %
L
s (2 Furto2g (1 0%
2 2
{_XZ;IQZ} H
%
(ya2;y0%) G%fg) gnBg2q (1, 1)%
Y-R)Q:y u ) 3
2\ El 5 2 (1,1)%
{l 9.'1.&} (T) §1T20 Q '
{yxQ;0y-0}
{Q-y2:yxQ} 0

3 1 is the atom-diatom reduced mass.



314

Table 12.1. (continued)
Scal;;tggi;iSlon Explicit Form
{y@;yxaa} .
tyxazyal
{y@:y0} (th) %ﬂé029<1,1)
{yQ:0y} 2kT\%, % 2 (1,1)%
et (_i—) hn2c°Q" !
X 3
(yag;00y} (B2) o1 1)
2kT %8 % 2.(1,1)%
(x00;y80} [BE) Sroma

2
SR KT\, % 20(1,2)%
{xv“:;0y-0} ( H )
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Table 12.1. (continued)

Scalar Collision . .
Integral Explicit Form

%
fyysayd (ZEE} gr¥g2 (2:2)%

u
2T\ %8 & 2 (1,1)%
{y-00,00.y} (*ﬁ—) §W20 Q'
2 %
{y:00:y2%} (2kT) 8. %,2,(1,1)%
(ye?;9y:0} w3
{yiyx@l a
{yxQ;y}
{yo ;XXQ}
{yxQ;vQ~} 0
{Iyz;lxﬂ}
{ng:vvf} 0
{yy;aQ}
. ' O
{e@:yy}
{l,yz}
0




Table 12.2. Selected "u,v" Tensors

y,v" Tensor

Explicit Form

(0,0)
(1,0)
(1,1)
(1,2)
'(2,1)
(3,0)
(2,2)
(3,1)

(1,3)

115 (g-1)

)V

9t€



Takle 12.2. (continued)

"a,v" Tensor Explicit Form
-nliq - A ~n
(3,2) -5 [RUU + RW + RY + FY + &Y + €Y + yry + @ +Y) + 2kyR -
2RRUR + 2URRR - 2RBJR - 2RR\EJ + 2W@JRR - 2RRR) - 2IR@Jr - 2[RRR] +
12RRRRE]
29 R .
(2,3) . -5 [RUU + RW +RY + @U + @ + ®Y - 2RRRY + 2RURR - 2RRUYR +
2RRIR - 2RR®) + 2[®RR + 2RRK + 2RRIR + 2RRR) - 12RRRRR]
. 2(a-1)
(3,3) T [RUYR + WUR + URUR + RUW + W + URE + RYRY + WJRY +

x 2

URRY
L“Q)+EL’E+K\QE+ Yz + S +|ZI=JK+EU2 +@__K)+

+RWR + QUR + @R+ RUE + BRI+ REY+EIR +

+ REKK)+

[
)
b

[}
F—
A
~
)
)
+
N
~
)
~)
7~
7~
A
~
[

LLE
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Table 12.3. Rigid Sphere-Rigid Ovaloid Scalar Collision
Integrals

Scalar Collision ..
Explicit Fornm

Integral
2kT\E, L (1)
{l;l} <T) 211’2)(
{yv®iy? m X X
Bk
tyv2ivy?) (2—];3)-} (55, 1) = 343 4 27,03,
{yQ%;y} X X
2 2
{(yo%;yy"} ok \ 2n, () (3 (5)
NN 2T\ P )
{yv?;ye%) ( m ) 7 (=5x° 7+ hhx 27x %)
{ye?;ya?} (a:z) 1 35x (1) = sy (3 4 27 (5))
. .
{y:;0(y-2)} (2__'1_‘) P2 (D - pl1h2))
{(y-)80;v} H
B (-
{y'2,y-2) (BT) i 1 - g1
2kT\% 5, (~1) (1,2)
{y0; y@} ( ) m2(x - ptirel)

_5X
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Table 12.3. (continued)

Scalar Collision Explicit Fornm

Integral
: B % _ |
{yaniaay} (3&1) % (6X( "y 9x(1) - hhx(B) + 27x(5))
{eay:ynal |
2kT \Er 2, . (1) (1) (3) (3,2)
{ﬂ@,il@ﬂ} (——ﬁ-—) 3 (-2 + 10x ~ Ly - LT*Tr"0)
l'ﬂﬂ’-ﬂz} 2kT \Er2, (1) (3) (1,2) (3,2)
IY27_\_('9} ( < ) (x + 5y - 5T - T )
\ .
1
(22,02) (B ) s - )
{20;09) (sz) e TOLCLD I D 2y (3))
2 2
byZ, ) akr\% 5 (1) (3)
{22,y '(T) TR = x)
{yyioQ}
{207y} °
By
2,42 | (g}_:g ,mz(x(l) _ 4 (3,
L

{yviyy} G%%E)zhﬂ%(Zx(1) - X(3))



Table 12.3.

(continued)
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Scalar Collision

Integral Explicit Form
1 1
2ot (-1 1 (3,2)
{y-pa;0y-2} (EE£\ % (x( - 3X( ) -y (302D
{y-20:v0%) 2KT oy (1) = 5y (3) _ spl102) 4 4(3,2),
(2%y;0v-8) T X X
{y:yxal .
{yx@;y}
{y_nz;lx%} .
{yx@;ye”}
{yxQ: 0.y L
{ya;ayxal .
{yxpa:y}
' —) m
(pgo;ya) =)
fyy?;yxe o) .
{yxQ;yy ?)




Table 12.4.

Kihara Model Scalar Collisicn Integrals

Scalar Collision

Iategral Explicit Form
tysy} (ZkT)%z,“;iQ(I A (1)
e u
triyr’) 2kTF % [ (2,2)% (1) (1,2)%_ . (2,2)%,_(3)
{IY271} (u we [se'er ey + (69" 17T 50 ret T
% (1,3)% (3,3)%
(yr2iyr?) (21;1:?; [ (185 s ssg(2/0% 1650000 ()
(1,3)x
(171911 30% 340 (2:30% _ 490 3,3%), (30 Blg -
| (3,3)%
219(2,3)* + 1;7Q )X(S)]
{y;y0%) QKT (1,1)% (1,2)% (2,2)%, (1) (1,2)%
{YQZ;Y} era T BZQ T et - 50/ )X + (-6 7
*
Q(2,2) )X(3)]
a Note that in the spherical limit, X( n) - 20% and T(l n) %02 wvhere ¢
is a reference hard sphere radius and also in the rigid 1limit, Q(l,s)* = 1,

+

[
N



Table 12.4. (continued)

Scalar Collisica

Integral Explicit Fornm
{IQZ’IYZ} 2kT \ % (2,2)% . 165, (1,3)% (2,3)%  165_(3,3)%
{_Yz;lgz} (T) fzkmg ' + =20 - 15Q - =20 )
s (120 20% | g (2020% 050 (1,30% 0 (2,3)%
17103731%), 3) (87‘9“'3)* 2 %—7—9(3'3)*)x(5)]
tye®iye®) (E}IE—T)}Z %%[(‘29(2’2)* + 18130 _ g (2030% _ g0 (3,30%,
x 1w (g1 M* 4 g1, 20% 1359(]'3)* + 39 +
2—;'39(3'3)*”(” + (m2ut T * o 56(2/20% g9 +
300 (273)% _ 1959(3,3)»0:))((3) + (_%9(1,3)* ~ org .

(3,3)%

177 (5)
2 © ]

[AAY



Table 12.4. (continued)

Scalar Collisicn

Integral Explicit Form
REISSUY 2kT\% % (1,0)%, (1) _ .(1,2)
{y-28:y} (T) T o =T
{y-2,y-9) BEFERE DN L @10 g2, () o (1o %y (1,2]]
% -
{y0;v8) (BT a2 D% 1 4 @1 L g2k, (1) _ g1 1% 1.2
. |
(12301} (B ik [0 2 A1) a1 % L gg(2020%), (1) (2020 ]
. , % %
{y20;00y} (2_1:3) T (180 (2 2% 4 1gg (1% | 150 (2,30% _ 1g0(3,30%)
(1,3)*
x 1 x (et I* (12X 5pq (2,200 _ 1339 4
(3,3)%
30203, 289 1) 4 (20 D% | 0@ 20%
(1,3)*
99 (1e3)* | 500(2,3)% _ 19759(3,3)-1:))((3) N (_gzig | _

£€7¢



Table 12.4. (continued)

Scalar Ccllisicn

Integral Explicit Form
(3,3)%
210 (2:3)% 27 (5)]
Ly
{yeaiyaq} (_2_15_1-_)2%2[(29(2,2)* + e 3% 02,30 o (3,3)%) (=1)
: !
(e le* 50 (2,20% o0 (1,3)% | g0 (2,3)% | 15q(3,3)%) (1)
p(1:2) | 40(2,2)%,(3,2)7
o
{x.gg,xy } (ZkT) z [(59(2,2)* + g l1r30% _ 1 0(2,3)% _ 69(3,3)*))((1) +
{xy“;Qy-0} H
(62 {172)% _ 50(2,2)% _ o(1,3)% ) 0(2,3)% | (0(3,3)%) (3)
_50(2:2)%,(1,2) | o (1,2)% 59(2,2)*)1,(3,2)]

hee



Table 12.4. (continued)

Scalar Collisicn

Integral Explicit Form
2kt \¥ % (1,1)%, (-1) (1)
{2;0) (‘E‘) 2 {1 )* (=1 (1),
2 2 2kT\E |, % (2,2)%, (1) (3)
{Q Y ]‘ (T) L2Q ! (X - X )
% -
{99:90} (3%2) an2[(3@ {1 1% _ (2,204, (=1) (31,10,
ag (2e20%), (1) _50(2,2)% (3)]
2 2
{y*,0°} 2xm\E 3 (2,2)%, (1) (3)
{QZ'YZ} (T) li'szQ ("X + X )
{yy;QQ}
{90:yy} 0

= p

’ E
v2.42) (Z%E)Zun%n‘Z'Z)*(zx“) MEN

£X4



Table 12.4.

{continued)

Scalar Collisicn
Integral

Explicit Form

{yy;yy!}

{y-Q2:0y-0}

{y-00:y0%}
(ya®;0y-0)

—
t|x
-

o

Tk (2,0% ) () | (3)

+

+

g%g)z % 60 (2:20% | o (1,3)0% 1 0(2,3)% _ o(3,3)% (=1)
(g (17 1% _ 10 (2i20% | 0 (1,30% | gg(2,30% 50 (3,3)%) (1)
(g (2020% o (1,30% | 0(2,3)% | (0(3,30%) (3) . (_o(1,1)%
Q(2:20%) 0 (1,2) | 0(2,2)%,(3,2)]

(g%g)% %%[(hg(z,z)* eal1e3% | g @,30% o (3,30% (1)
(T D% L g1 2D% | g0(2,20% | 50(1,3)% | go(2,3)%

123 3%), (Do (1% 50 (2,200 | 6o (1,30% _ 40 (2,30
6Q(3,3)*)X(3) 4 (= DIx (1, 2)% 59(2,2)*)T(1,2) +
(6n{1:2)% _ 59(2,2)*)T(3,211

92¢
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Table 12.5. Effective Cross Sections in Terms of Scalar
Collision Iantegrals (Field-Free Transport
Coefficients)

Effective Cross Explicit Formd

Section
(100013) zgﬁ{ v}
Gli000/8’ ap | 3v&sl'l
1000 (B
G(IOIOI[&) 8 Eh 5
> ZZ.ﬂ[ﬁYw}_{lqy}]
10108 345 ¥ L2' XY 2
610008 ag B {yy“:y}
10008
G ( (%)
100118’ . 252 [{ } {1:%92}]
ey YiYr -~ .
G (10018, Weg bt ="~ {ya®;y}
1000'8’ o
6
G(10108) 454 [{ 2.2} _ 50vivr2) - Siyy2.y)
1010!g TSV, YY“ixy S{yiyy s{yy iy
aB
6 2
13 €
v R+ Bhuy + SG07 %+ 2ty |
2¢ g2
5(1010 8, 2 [ b [{XYZ;XQZ} iy
G‘iﬁ?&'ﬁ’ 2 2 ;.2 .2
aB 5{xiy@ } 5 5E {72,92}]
Z(ya% iyt Flyix} + 2e2 (27,77}
[0 3
a £ = Mn
n (Ma'*'MB)
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Table 12.5. (continued)

Effective Cross

Explicit Form

Section
2
2g
10018 o 2,42 w02y 2. .
G(1001|B)0LB iﬁs[{xﬂ ;Y)Y - {y;yQ°} - {y0%;y} + {xy:y}
2
3E
+ —Ea?, %]
Ea
1010 (a 3,3 2.
G(1000|B) 8 EE £abp [5_{ }_{y_v _\21}]
G(looola.)“ 315 ¥, 2T T {yiyy Y
1010'a’
1010 {a 3.3
G( I2) -4E7E
:813 S B Tgva—e‘ [{leile}-%{l:y_Yz} - %{172;1}
0B
+ 3B0ysyd = Livd v?) - 20yysvyd
10100
G(:gg:ls’as 2 Fgasg {{yz:l@;} 5{1;%92} , tyv?sy)
G(WIOIg)M3 315 VB {yQ%;yy°} 2{y0%;y} {y:yy“}
s {YZ,QZ}]
2 {erYz}
6
(10102 ‘Eg [{XYZ?XYZ} - %{x:xv.z} - %{_Yz;l} +
1010 'a o8 Tgﬁzg . ,

¥y

(-21,—5- + -—-2?%) {y;yl + g—o‘z(%{yz,yz} + 2{ﬂ3u})]
B B
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Table 12.6. Effective Cross Sections in Terms of Scalar
Collision Integrals (Senftleben-Beenakker

Effects--Critical Field)

Effective Cross ..
Explicit Fornm

Section
£2
61008 ﬁ-z-é[-{lﬂzﬂ} + 4{yQ;ev} - {y-2,y°0} -
2
g
Bro.
?{g,_@}]
o
2 2
3& E
}283]3 A [-—2({99 100} - —{Q 2%1)
of aﬁ ga
2{y-0q;¢ ‘Q} - —2-{ aQivael + +h{vaq:inay}
FLY LY T ARALIER A1 PRI RIIA S
+ 211{_12;9_9_'1} + ?L.T{l QR:YY 2y _
%{192;192}]
0200 A 12 2
G(ozool e L{eR:e0) - 3(e®,0 ]

aB oB
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Table 12.7. Effective Cross Sections in Terms of
Scalar Collision Integrals (Senftleken-
Beenakker Effects-Saturation Values)

Effective Cross Explicit Form

Section

o190 7 flomra  yoaeh]

(1200 8, @8 5% L L{y-ae:v}  3(yel;y)

60008’ aB” = =" -

af

101018 {652 o tway o) | (yaye®t | (rvPieyea)
( g > |2 .o 2.2 2
541200 o8 5V, [2 {y-oQ;vy} ®&{y@7;y} {y-QQ:yy"}

1200|s °

‘oo aB Ay iy’ £ {yz,szz}

* 3080?32 02 %)
B

10018,
G(IZOOI B {?Ei [{l;gl-g} {XQZ;QI'Q} 1{1:%92}

(12008, e o0} T (v e00 w02l Tva2.

IOIOI aB VO&B {.Y_ Q&'!} {l @.'XQ } 3{19 'l}

+ %{192;192}]
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